
Predicting Security Weaknesses in Microservice
Architectures using Structural Metrics

No Author Given

No Institute Given

Abstract. Correcting a system after it has been deployed is always
more expensive than correcting it earlier in its lifecycle. When it comes
to security weaknesses, this cost becomes even greater because the weak-
ness can be exploited by an attacker to cause a major damage and fixes
are disruptive. This work addresses the problem of security weaknesses
in microservices architectures. We propose an approach for building a
predictor of security weaknesses in this type of architecture. To achieve
this, we used a comprehensive curated dataset of microservice archi-
tectures with annotated security weaknesses, and developed a machine
learning model for early prediction of architectural security issues using
design-level metrics. The work is grounded in the hypothesis that ar-
chitectural structure patterns can serve as reliable predictors of security
compliance in microservice systems, enabling early detection of security
weaknesses before implementation. Our predictive model leverages archi-
tectural metrics to assess compliance with key security concerns defined
by well known rules for secure microservice design. The analysis reveals
specific architectural patterns as consistent indicators of security risks,
providing interpretable insights that can guide architects in making in-
formed design decisions.

Keywords: Microservice Architecture · Architectural Metrics · Security
Weaknesses · Machine Learning

1 Introduction
In the realm of software development, addressing system flaws post-deployment

invariably incurs higher costs compared to rectifying issues during earlier stages
of the lifecycle. This financial burden is significantly amplified when dealing with
security vulnerabilities, as these can be exploited by malicious actors to inflict
substantial damage, and the necessary remedial measures often disrupt ongo-
ing operations [1]. This research work focuses on the critical issue of security
weaknesses within microservices architectures, a domain that has garnered con-
siderable attention due to its inherent complexity and the high stakes involved
in securing distributed systems.

Microservices architectures, characterized by their decentralized and indepen-
dently deployable services, offer numerous advantages such as scalability, agility,
and resilience. However, these benefits come at the cost of increased security
challenges [12]. Each microservice, operating as an independent entity, presents



2 No Author Given

a potential entry point for attackers, thereby expanding the attack surface and
complicating the security landscape [12]. The dynamic nature of microservices,
with frequent deployments and updates, necessitates continuous security moni-
toring and management to ensure that each service is adequately protected.

The importance of integrating security measures at multiple levels—including
individual services, data exchanges, and the underlying infrastructure—cannot
be overstated. Effective security strategies must encompass real-time threat de-
tection, regular vulnerability scanning, and robust mechanisms for patching iden-
tified weaknesses [6]. Moreover, the adoption of practices such as threat model-
ing [15] during the design phase can help identify potential points of weakness
and mitigate them early in the development process [6].

This work proposes an innovative approach to building a predictor for secu-
rity weaknesses in microservices architectures. By leveraging a comprehensive cu-
rated dataset of microservice architectures with annotated security weaknesses,
we developed a machine learning model capable of early prediction of architec-
tural security issues using design-level metrics. Our hypothesis is that architec-
tural structure patterns can serve as reliable indicators of security compliance,
enabling the early detection of security weaknesses before implementation.

The predictive model we propose utilizes architectural metrics to assess com-
pliance with key security concerns defined by established rules for secure mi-
croservice design. Our analysis reveals specific architectural patterns that con-
sistently indicate security risks, providing interpretable insights that can guide
architects in making informed design decisions. This approach not only enhances
the security posture of microservices architectures but also supports regulatory
compliance and fosters trust among users and stakeholders.

The remainder of the paper is organized as follows. Section 2 introduces the
general approach. Section 3 describes the dataset preparation process, including
rule labeling and architectural feature extraction. Section 4 details the construc-
tion of classifiers and the evaluation strategy for predicting security violations.
Section 5 reports and analyzes the experimental results and discusses the find-
ings then outlines threats to validity. Section 6 reviews related work. Finally,
Section 7 concludes the paper and outlines future research directions.

2 General Approach
Our goal is to support secure-by-design development of microservice systems

by predicting architectural security rule violations based on structural design
information. To achieve this, we leverage architectural models and formulate the
task as a multi-label classification problem, where each system may simultane-
ously violate multiple security rules.

Figure 1 presents an overview of our methodology. We begin with Data
Flow Diagrams (DFDs) from the MicroSecEnD dataset [14], each represent-
ing a microservice-based system architecture. The dataset provides rule-related
information from which we derived binary compliance labels for 17 architec-
tural security rules [2], indicating the presence or absence of specific design-level
violations.



Abbreviated paper title 3

Architectural Models (DFDs)
From MicroSecEnd

Enriching & correcting (*) 

Label generation 
(Rule compliance Vs Violation)

Extracting 28 Structural Metrics

Dataset ready for predictive modeling
(Feature vectors + multi-label targets)

Multi label classifier
(Supervised learning)

Rule 01
0/1 

Security Rules Violation Predictions
(Binary predictions per rule)

...
Rule 02

0/1 
Rule 18

0/1 

Dataset

Fig. 1. Overview of the proposed approach for predicting architectural security rule
violations using structural metrics. (*) indicates that enrichment was performed after
contacting the first author of the MicroSecEnd dataset. Binary predictions per rule are
generated where 0 denotes compliance and 1 indicates a violation.

From each DFD, we extract a 28-dimensional feature vector composed of
architectural metrics that capture structural and design-level properties of the
system. These features include system size, service coupling, communication flow,
best-practice adherence, and observability coverage. They are designed to reflect
architectural characteristics that may influence security-relevant properties.

The resulting feature vectors are used to train supervised machine learning
classifiers, detailed later, that learn to associate architectural configurations with
rule violations. We adopt a binary relevance strategy for multi-label classifica-
tion: one independent binary classifier is trained per rule, allowing for tailored
tuning, individual performance analysis, and interpretable predictions. Each clas-
sifier produces a binary output where 0 denotes compliance and 1 indicates a
violation of the corresponding rule.

3 Dataset Preparation for Predictive Modeling
This work investigates whether architectural metrics can be used to predict

security weaknesses in microservice systems. Therefore, the dataset needed must
contain structural metrics and corresponding security weakness information.

To the best of our knowledge, there are two prominent datasets that address
microservice architectures and security:

– Dataset 1: Authors in [22] created this dataset by manually modeling 10
open-source microservice systems as component diagrams, each with secure
and insecure variants (30 models in total). The diagrams include components,
connectors, and microservice-specific roles (e.g., API Gateway), annotated
with security mechanisms (e.g., token-based authorization). Security metrics
were computed on the extracted models using custom scripts.



4 No Author Given

– MicroSecEnD [14]: Contains 17 Java-Spring microservice applications man-
ually modeled as DFDs. These DFDs were assessed for compliance with a
set of architectural security rules, derived from a benchmark proposed in [2].
A secure variant was created for each violation. The dataset provides 226
models (original and secure) in PlantUML, PNG, and JSON formats, with
traceability to the source code.

Given the limited size of the first dataset, MicroSecEnD best fits our needs:
its DFDs represent services, data stores, external entities, and dataflows, en-
riched with security annotations and linked to source code to ensure traceability
between the model and the implementation.
3.1 Security Rules

To assess architectural security in MicroSecEnD, the authors applied 17 rules
derived from the microservices architectural security benchmark [2]. This bench-
mark originally defined 18 rules based on widely recognized best-practice sources,
including OWASP, NIST, and the Cloud Security Alliance. One rule (R15) was
excluded due to its inapplicability to the selected systems.

In the dataset, each system is annotated per rule with one of three labels:
follow, partially follow, or violate, reflecting the degree of compliance.

Below is a grouped summary of the rule categories as defined by the authors:

Authentication and Authorization (R1–R6): These rules emphasize the im-
portance of routing all external requests through a central access point (typ-
ically an API gateway), responsible for enforcing authentication and autho-
rization. Responsibilities should be separated from other logic and handled
by dedicated services. Internal services must also authenticate and authorize
each other to block unauthorized internal calls. External credentials should
be transformed into internal representations that avoid exposing sensitive
identity information. Additionally, mechanisms must be in place to detect
and limit repeated failed login attempts.

Encryption (R7–R8): All communication involving sensitive data or creden-
tials must be encrypted using secure protocols such as HTTPS. This applies
to both inter-service and service-to-user communication, aiming to prevent
tampering and man-in-the-middle attacks.

Logging (R9–R12): Promote centralized logging and monitoring to detect ab-
normal behavior. Logs should be collected by local agents on the same host
as each microservice. These agents must sanitize entries (e.g., remove pass-
words, tokens), then forward them via a message broker, ensuring only au-
thenticated services can exchange logs and preventing spoofing or traffic
injection.

Availability (R13–R15): Aim to maintain system responsiveness and re-
silience through API gateway-level load balancing, circuit breakers to halt
calls to failing services, and usage limits to avoid service overload. R15 was
excluded due to its inapplicability to the selected systems.

Service Registry (R16–R17): Require that registry components be isolated
and validate that only legitimate services can register, update, or query. This



Abbreviated paper title 5

prevents unauthorized components from accessing or manipulating service
metadata.

Secret Management (R18): Recommends centralized secret handling (e.g., API
keys, passwords) using a “Secrets as a Service” model. Credentials should be
created on demand, rotated and revoked after a lease period to reduce the
risk of exposure.

These rules form the basis for assigning per-system multi-label annotations,
which serve as ground truth for training and evaluating our predictive models.
3.2 Preprocess of Labeling

To support the prediction task, we prepared the labels by converting them
into a binary format. For each architectural model, this results in a vector of 17
binary values indicating whether the architecture model violates each security
rule. We also addressed observed inconsistencies between the labels and models
and completed missing variants to maintain alignment across the dataset. This
was done after contacting the dataset’s first author.

The label partially follow appeared only for Rule R1, which requires a single
API Gateway that handles both authentication and authorization. When only
one condition was met, we treated it as non-compliant (value 1). Since no variants
were provided for these cases, we created new ones by adding missing elements
at the model level.

After finalizing the base rule table—containing labels for the base DFDs as
published in [14]—and correcting the variants, we assigned binary labels to all
entries using the following procedure:

– For each variant, we began by copying the labels from its corresponding base
system.

– The rule for which the variant was created was labeled as 0 (compliant).
– We also accounted for rule dependencies. For example, Rule R12 requires

the use of a message broker to securely transfer logs from a local logging
agent (Rule R10) to a central logging subsystem (Rule R9). Therefore, when
a variant is created to comply with Rule R12 (i.e., R12 is labeled as 0), we
also labeled Rules R10 and R9 as 0, since both are necessary conditions for
satisfying the requirements of Rule R12.

In total, this process produced binary labels for 237 architectural models,
including base systems and their variants.
3.3 Architectural Metrics as Features

We use architectural features from the DFD models in the form of quanti-
tative structural metrics. These metrics describe how components are organized
and interact, serving as input to supervised models that learn patterns linked to
rule compliance.

To ensure both practicality and relevance, we followed the criteria established
in [10]. Specifically, selected metrics had to be clearly defined, automatically
derivable from DFDs, and produce consistent, objective results across systems.



6 No Author Given

They also needed to capture meaningful aspects of microservice architecture and
remain applicable regardless of the programming language used.

Based on these criteria, we selected 28 structural metrics, supported by the
architectural metrics framework from [16], which aligns metrics with ISO/IEC
25010:2011 quality attributes. Each metric was mapped to this framework and
adapted to microservice context.

The metrics fall into the following categories:

– Size and Composition Metrics: Quantify the number and proportion of
architectural elements, such as services and infrastructure components (e.g.,
num_services, num_components). These offer a high-level view of system
scale and structure.

– Coupling and Degree Metrics: Measure inter-service connectivity, focus-
ing on direct dependencies and fan-in/fan-out
(e.g., avg_connections_per_service, max_service_fan_in). They reveal
interaction intensity and component interdependence.

– Centrality and Flow Complexity Metrics: Capture structural patterns
like communication paths, cyclic dependencies, and central routing roles
(e.g., longest_shortest_path, num_cycles), reflecting architectural com-
plexity and control flow.

– Interface and Exposure Metrics: Reflect external exposure by quantify-
ing entry points and endpoint densities (e.g., num_entry_points,
avg_endpoints_per_service), relevant to attack surface analysis.

– Design Practice and Pattern Metrics: Indicate the presence of recom-
mended architectural patterns for security and maintainability, such as API
gateways, config servers, and per-service databases
(e.g., api_gateway_presence, config_centralization).

– Observability and Monitoring Metrics: Assess instrumentation for mon-
itoring and tracing, supporting runtime visibility and operational security
(e.g., monitoring_coverage, tracing_server_presence).

– External Dependency Metrics: Capture interactions with external sys-
tems and third-party providers (e.g., num_external_entities), reflecting
reliance on elements outside the trust boundary.

The complete list of metrics, including formulas, descriptions, and the archi-
tectural metric from the framework [16] that most closely correspond to each
are available in the supplementary Git repository 1.

To generate input features for predictive modeling, each system’s DFD model
was transformed into a 28-dimensional numerical vector, where each dimension
represents a structural metric. This involved parsing JSON models to classify
components by stereotype, identifying and labeling dataflows by communication
type, constructing a directed graph with components as nodes and flows as
edges, and computing structural metrics on the graph. The resulting vectors,
paired with multi-label annotations of security rule violations, constitute the
dataset used for training and evaluation.
1 https://anonymous.4open.science/status/archmetrics-sec-predictor-msa-176C



Abbreviated paper title 7

4 Prediction Modeling of Security Rules Violation
The dataset of architectural metrics and rule violation labels described above

are used in our approach to automatically identifying security weaknesses from
design-time representations of microservice systems. Specifically, each violation
of an architectural security rule is treated as a potential security weakness, and
our objective is to predict which rules are violated in a given architecture.

4.1 Problem Formulation and Modeling Strategy
We formulate the task as a multi-label classification problem: a given system

may simultaneously violate multiple security rules. To support model trans-
parency and diagnosis, we adopt a Binary Relevance (BR) transformation [13],
which decomposes the task into 17 independent binary classification problems.
This approach enables per-rule interpretability, allows tailored handling of class
imbalance, and remains computationally scalable. Each binary classifier takes
as input a 28-dimensional feature vector derived from the system’s DFD model.
The output is a binary label indicating whether the specific rule is violated.

4.2 Model Selection and Class Imbalance Handling
We selected three widely used classifiers for our rule-specific prediction tasks:

Decision Trees (DT), Support Vector Machines (SVM), and Random Forests
(RF). These models were chosen for their complementary strengths, namely
interpretability, robustness to nonlinear boundaries, and ensemble-based perfor-
mance, making them suitable for analyzing architectural rule violations under
varying data conditions [7].

The dataset exhibits significant class imbalance across different architectural
rules, as illustrated in Figure 2. The distribution reveals that most rules (R1-
R12, R17, R18) are heavily skewed toward rule violations (Class 1). Conversely,
rules R13, R14, and R16 demonstrate the opposite pattern, with compliance
instances (Class 0) dominating the dataset.

Fig. 2. Per-rule class distribution showing the number of violating and compliant sam-
ples for each security rule.



8 No Author Given

This pronounced imbalance poses challenges for traditional machine learning
approaches, which tend to favor majority classes. To address this issue, we avoid
data-level resampling techniques, which can distort the underlying distributions
and reduce model interpretability [19]. Instead, we employ cost-sensitive learn-
ing strategies [3]. For Decision Trees (DT), class weights are integrated into the
impurity measure to penalize errors on minority instances. Support Vector Ma-
chines (SVM) use class-weighted objectives to scale penalties for misclassifying
underrepresented classes. Random Forests (RF) aggregate cost-sensitive trees
using ensemble voting that emphasizes correct minority class predictions.
4.3 Evaluation Metrics

To assess classifier performance under class imbalance, we adopt metrics that
reflect both majority and minority class behavior [21, 3]. As recommended in
[21], we considered:

– True Positive Rate (TPR) and True Negative Rate (TNR): Also known
as sensitivity and specificity metrics:

TPR =
TP

TP + FN
, TNR =

TN

TN + FP

– Geometric Mean (G-Mean): Captures balanced performance across classes
and penalizes poor performance:

G-Mean =
√

TPR · TNR

Final model selection prioritizes G-Mean, as it emphasizes balanced sensi-
tivity and specificity and demonstrates robustness to skewed class distributions
effectively [21].

5 Experimentation and Results
We evaluate our prediction approach through a structured experimentation

process designed to assess per-rule classifier performance, compare algorithms,
and address challenges such as class imbalance and model instability.

The dataset is split into 80% training and 20% testing. All training results are
averaged using 5-fold stratified cross-validation, with classifiers tuned to maxi-
mize the G-Mean metric. To evaluate model stability, we compute the standard
deviation of G-Mean across folds (CV Std). Hyperparameters are selected via
grid search using a custom G-Mean-based scoring function, ensuring fair and
balanced model comparisons.

The experimentation follows five phases:

1. Baseline Evaluation: Cost-sensitive Decision Trees trained for all 17 rules.
2. Algorithm Comparison: Random Forest and SVM models evaluated for

comparative analysis.
3. Rule Categorization: Rules grouped based on model performance and

stability.
4. Refinement: Additional tuning for unstable or underperforming classifiers.



Abbreviated paper title 9

5. Model Selection: Final models chosen per rule based on cross-validation
G-Mean.

Detailed hyperparameter grids are available in the project’s Git repository
mentioned before.
5.1 Algorithm Performance

We evaluated three classifiers—cost-sensitive Decision Trees, Random Forests,
and Support Vector Machines (SVMs)—on 17 architectural rules. The results,
summarized in Figure 3, report the mean G-Mean scores along with standard
deviation across cross-validation folds. Performance varies significantly across
rules and algorithms. SVMs often yielded the highest and most stable G-Mean
scores (e.g., reaching 0.994 on R16), while Random Forests and Decision Trees
performed comparably well on many rules. However, all classifiers struggled on
some rules such as R8, R11, and R17, where G-Mean scores dropped below 0.3
and stability was low.

Fig. 3. Cross-validation performance comparison of three machine learning algorithms
across the whole rule sets.

Based on classifier performance and stability, we grouped the rules into
three categories. Category A (Excellent) includes six rules (R5, R9, R10, R13,
R14, R16) with G-Mean above 0.8 and consistent performance across classifiers.
Category B (Good) covers four rules (R1–R4) with G-Mean exceeding 0.7 but
exhibiting higher variance. Category C (Poor) comprises seven rules (R6–R8,
R11, R12, R17, R18) with low performance and instability across classifiers.
5.2 Refinement Experiments

To improve Category B classifiers, which showed good G-Mean but poor sta-
bility, we applied a refinement pipeline combining feature selection and Random
Forest tuning. We hypothesized that irrelevant or redundant dimensions in the



10 No Author Given

28-feature space could destabilize the models. Using SelectKBest (ANOVA F-
test) and grid search over model depth, split size, and feature count, we achieved
mixed results. R1 and R2 did not yield significant improvements. However, R3
and R4 saw substantial gains, improving from 0.862±0.070 to 0.8956±0.0514 and
0.714±0.154 to 0.7739± 0.0461 respectively, suggesting limited generalizability
of tuning strategies across rule contexts.

For Category C, persistent poor performance across classifiers prompted a
deeper data quality analysis. Specifically, we analyzed class imbalance and class
overlap as potential causes of model failure. The level of imbalance is measured
using the imbalance ratio (IR), defined in [21] as:

IR =
Number of majority class instances
Number of minority class instances

Class overlap was assessed using the Kolmogorov–Smirnov (KS) test, comparing
class-conditional distributions. For each feature i:

Di = sup
x

|F (i)
1 (x)− F

(i)
2 (x)|

Where F
(i)
1 (x) and F

(i)
2 (x) are the empirical cumulative distribution functions

for the positive and negative classes, respectively. We define the overlap score
as:

Overlapi = 1−Di, Overlap Score =
1

n

n∑
i=1

(1−Di)

This provides a model-agnostic, interpretable measure of class similarity in fea-
ture space [8].

All results for IR and overlap scores are available in the supplementary Git
repository. They reveal significant data quality issues across all Category C rules,
with imbalance ratios ranging from 8.88 to 13.81 and overlap scores consistently
exceeding 0.75. These values indicate substantial class overlap in the feature
space, confirming that the limitations observed in Category C are primarily due
to structural data quality problems. Consequently, our final multi-label model
includes only classifiers from Categories A and B.
5.3 Model Selection and Interpretations

The final classifier for each rule was selected from Categories A and B based
on cross-validated G-Mean and model stability. SVMs were chosen for the rules
R9, R10, R13, R14 and R16, while Random Forests were selected for rules R1
through R5.

In terms of generalization, the average performance on the held-out test set
across these 10 selected rules demonstrates strong results. The True Positive
Rate (TPR) averaged 97.7%, indicating that the models are highly effective at
detecting security rule violations, which is a critical objective in proactive secu-
rity assessment. G-Mean reached 89.7%, confirming balanced performance across
both classes despite class imbalance. While the True Negative Rate (TNR) was
slightly lower at 83.2%, it remains acceptable given the priority of capturing true
violations in security-critical systems.



Abbreviated paper title 11

To ensure interpretability, we conducted feature importance analysis using
Random Forest models, which offer built-in mechanisms for ranking feature rel-
evance. Although RFs were not the final classifier for all rules, they achieved
competitive performance and thus served as a common basis for interpretation.
The most influential features reflect architectural properties such as structural
complexity, exposure surface, and modularity. High-importance features like
cycle_ratio_and_count and longest_shortest_path capture tightly coupled
components and deep communication chains. These patterns are often associ-
ated with weak boundary enforcement and increased attack surfaces. The feature
num_external_entities also ranked highly, suggesting that the number of sys-
tem entry points is a strong structural cue for differentiating secure architectures.
Features such as api_gateway_dependency and system_interaction_density
help distinguish between centralized and distributed control structures. Finally,
a group of moderately weighted features, including ratio_max_fan_in,
database_per_service_ratio, and ratio_infrastructural_services, high-
lights the importance of balanced service responsibilities and resource isolation.
Overall, the models leverage these structural signals without manual threshold-
ing, adapting their interpretation to the context of each rule.

Nonetheless, the exclusion of Category C rules from the final multi-label
classifier underscores the limitations of the current structural feature set in cap-
turing certain security concerns. Authentication and encryption policies (R6, R7,
R8) require detecting rate-limiting mechanisms and protocol-level configurations
such as TLS/SSL usage. Data handling and sanitization rules (R11, R12) involve
internal processing and specific security configurations that are not structurally
encoded. Similarly, service validation and secret management rules (R17, R18)
rely on validation logic and configuration details that exceed the granularity
of structural representations. While our features effectively capture topological
and complexity-related traits, they fall short in reflecting protocol-level config-
urations. Moreover, high overlap scores suggest that structural similarity does
not necessarily imply similarity in security implementation. This highlights the
need for multi-layered feature engineering to fully represent a system’s security
posture, as some aspects remain underrepresented in the current approach.

5.4 Discussion

This study explored whether architectural security rule violations in microser-
vice systems can be predicted from structural design metrics. The results provide
strong empirical support for the hypothesis that architectural structure reflects
security-relevant signals. This reinforces the view that security, like maintain-
ability or performance, can be assessed early in the software lifecycle through
architectural analysis.

Our findings show that structural features—such as service connectivity, com-
munication patterns, and infrastructural component use—correlate with specific
types of violations, supporting the notion of security as a measurable architec-
tural quality. This challenges the traditional treatment of security as a late-stage
concern, highlighting its roots in system design.



12 No Author Given

However, variation in performance across rules reveals that structural models
are more predictive for some security aspects rather than others. Rules involving
architectural anti-patterns or exposure boundaries were effectively predicted,
while those related to encryption or authentication were less so. This indicates
the need to integrate richer features in future work.

A key strength of our approach is that it enables early, cost-effective detection
of design-level security issues without requiring system implementation. It is thus
suitable for integration into continuous architectural evaluation and DevSecOps
workflows. Moreover, using interpretable classifiers allows for actionable insights,
as feature importance reveals the structural anti-patterns driving each violation
prediction.

5.5 Threats to validity
While the results are promising, several threats to validity must be acknowl-

edged. Construct validity refers to how accurately the study captures the in-
tended concepts [18]. A primary threat in this context is the gap between ab-
stract security concepts and what structural metrics can capture.

– Limited metric expressiveness: The structural metrics used in this study
cannot fully express security concerns related to encryption configurations,
authentication policies, or runtime data flows. To mitigate this limitation,
only architectural rules whose violations can be meaningfully inferred from
structural design were included. Future work should integrate additional
feature types to extend coverage and improve semantic fidelity.

Internal validity relates to whether observed results are attributable to the
proposed approach rather than external biases. This experiment faces several
threats:

– Reliability of Architectural Models: The MicroSecEnD dataset provides Data
Flow Diagrams (DFDs) manually constructed by the original authors through
semi-structured analysis of open-source microservice systems. While this en-
sures abstraction consistency and domain relevance, it also introduces human
subjectivity in identifying components and data flows. To increase reliability,
the original authors applied a validation process involving five researchers,
providing reasonable assurance of the correctness of the models. In our study,
we did not perform the architecture extraction ourselves, relying instead on
this independently produced dataset created by researchers who were un-
aware of our study’s objectives. This separation reduces the potential bias
in our experiments. Future work could explore automated or tool-assisted
extraction to further enhance consistency and reproducibility.

– Labeling reliability: Security violation labels were originally assigned through
manual inspection based on 17 architectural security rules. Although our
team conducted a thorough review and correction process, some residual
noise may persist due to the inherently interpretive nature of design-level
security rules. To reduce the influence of subjective bias, labeling in our



Abbreviated paper title 13

study was performed by multiple authors and cross-validated through inde-
pendent reviews. Support tools or semi-automated labeling frameworks may
help reduce this risk in future studies.

External validity concerns whether the findings generalize beyond the studied
context:

– Dataset diversity and representativeness: The dataset includes 237 archi-
tectural models from Java-based microservices using the Spring framework.
While it is one of the largest datasets of its kind, it may not capture the full
diversity of architectural practices, technologies, or security concerns found
in real-world systems. The findings may therefore be biased toward Spring-
style architectures. To reduce this risk, the architectural metrics used in this
study were carefully defined at an abstract level, independently of any spe-
cific technology stack, in order to reflect structural properties that generalize
across platforms and development environments.

– Scope of security rules: This study focuses on 17 architectural security rules
selected from a broader set of 18. While not covering all possible security
threats – such as deployment-specific issues – the selected rules target design-
time architectural weaknesses that are amenable to automation. They were
derived through a systematic analysis of relevant standards and literature,
covering diverse areas such as authentication, encryption, availability, log-
ging, and secret management. Although deployment concerns represent a
complementary viewpoint, the chosen rule set offers broad and representa-
tive coverage of architectural-level security issues, supporting the validity of
our findings within this scope.

6 Related Work
Architecture-level security assessment in microservice systems has gained at-

tention through the use of metrics and formal models. Zdun et al. [22] assess con-
formance to secure design decisions using microservice-specific metrics, though
their approach targets post-implementation systems. Design-time methods based
on enriched Data Flow Diagrams (DFDs) and formal rules have been proposed
to detect security flaws in software architectures more generally [17, 20]. Chon-
damrongkul et al. [5] specifically apply ontology reasoning to identify security
vulnerabilities in microservice architectures through component-and-connector
models. While these approaches rely on manually defined rules and formal ver-
ification, our method complements them by learning predictive patterns from
labeled architectural data, allowing broader generalization to unseen designs
and reducing the manual effort required for rule specification.

Beyond security-specific efforts, studies such as [9, 11] show that the analysis
of recovered architectures can reveal issues like unnecessary service interactions
or dependency cycles. Brogi et al. [4] propose a systematic method for detecting
and resolving such architectural smells that may violate microservice design
principles. Although not explicitly security-focused, these works highlight the
relevance of structural features and support automated, early-stage analysis for
quality assurance, including security.



14 No Author Given

7 Conclusion
This paper proposes an approach to predict architectural security rule vi-

olations in microservice systems from early design. We proposed a set of 28
architectural metrics computed from Data Flow Diagrams, specifically designed
to capture structural characteristics relevant to secure design. These metrics
were used to train predictive models that assess compliance with predefined se-
curity rules before implementation. The approach was evaluated using a curated
dataset of annotated microservice architectures. The results show that several
categories of rule violations, particularly those related to exposure, service con-
nectivity, and logging infrastructure, can be effectively predicted from structural
features. These findings support the use of architecture-level metrics for early
security validation and contribute to secure-by-design development practices.

As future work, we plan to expand the metric set by incorporating semantic
and configuration-level aspects, such as authentication mechanisms, communi-
cation protocols, and deployment properties, in order to better capture security
rules that are not adequately reflected in structural representations. We also aim
to assess the scalability and generalizability of the approach on larger and more
heterogeneous microservice systems. Ultimately, our goal is to integrate this pre-
dictive capability into architecture modeling environments to enable continuous
and automated security feedback throughout the design process.

References
1. Ross Anderson. Security Engineering: A Guide to Building Dependable Distributed

Systems, third edition. John Wiley & Sons Inc, January 2021.
2. Anusha Bambhore Tukaram, Simon Schneider, Nicolás E. Díaz Ferreyra, Georg

Simhandl, Uwe Zdun, and Riccardo Scandariato. Towards a security benchmark
for the architectural design of microservice applications. In Proceedings of the 17th
International Conference on Availability, Reliability and Security, ARES ’22, New
York, NY, USA, 2022. Association for Computing Machinery.

3. Paula Branco, Luís Torgo, and Rita P. Ribeiro. A survey of predictive modeling
on imbalanced domains. ACM Comput. Surv., 49(2), August 2016.

4. Antonio Brogi, Davide Neri, and Jacopo Soldani. Freshening the air in microser-
vices: Resolving architectural smells via refactoring. In Sami Yangui, Athman
Bouguettaya, Xiao Xue, Noura Faci, Walid Gaaloul, Qi Yu, Zhangbing Zhou,
Nathalie Hernandez, and Elisa Yumi Nakagawa, editors, Service-Oriented Com-
puting - ICSOC 2019 Workshops - WESOACS, ASOCA, ISYCC, TBCE, and
STRAPS, Toulouse, France, October 28-31, 2019, Revised Selected Papers, vol-
ume 12019 of Lecture Notes in Computer Science, pages 17–29. Springer, 2019.

5. N. Chondamrongkul, J. Sun, and I. Warren. Automated security analysis for mi-
croservice architecture. In 2020 IEEE ICSA Companion 2020, Salvador, Brazil,
March 16-20, 2020, pages 79–82. IEEE, 2020.

6. Daniel Deogun, Dan Bergh Johnsson, and Daniel Sawano. Secure By Design.
Manning, September 2019.

7. Pedro M. Domingos. A few useful things to know about machine learning. Com-
mun. ACM, 55(10):78–87, 2012.

8. J. Gauss, F. Scheipl, and M. Herrmann. Dcsi - an improved measure of cluster
separability based on separation and connectedness. ArXiv, abs/2310.12806, 2023.

9. Giona Granchelli, Mario Cardarelli, Paolo Di Francesco, Ivano Malavolta, Ludovico
Iovino, and Amleto Di Salle. Microart: A software architecture recovery tool for



Abbreviated paper title 15

maintaining microservice-based systems. In 2017 IEEE International Conference
on Software Architecture Workshops, ICSA Workshops 2017, Gothenburg, Sweden,
April 5-7, 2017, pages 298–302. IEEE Computer Society, 2017.

10. Vira Liubchenko. Evaluating software architecture: A systematic mapping study
on design metrics and their applications. In Igor Sinitsyn and Philip Andon, ed-
itors, Proceedings of the 14th International Scientific and Practical Programming
Conference (UkrPROG 2024), Kyiv, Ukraine, May 14-15, 2024, volume 3806 of
CEUR Workshop Proceedings, pages 100–111. CEUR-WS.org, 2024.

11. Shang-Pin Ma, Chen-Yuan Fan, Yen Chuang, Wen-Tin Lee, Shin-Jie Lee, and Nien-
Lin Hsueh. Using service dependency graph to analyze and test microservices. In
Sorel Reisman, Sheikh Iqbal Ahamed, Claudio Demartini, Thomas M. Conte, Ling
Liu, William R. Claycomb, Motonori Nakamura, Edmundo Tovar, Stelvio Cimato,
Chung-Horng Lung, Hiroki Takakura, Ji-Jiang Yang, Toyokazu Akiyama, Zhiyong
Zhang, and Md. Kamrul Hasan, editors, 2018 IEEE 42nd Annual Computer Soft-
ware and Applications Conference, COMPSAC 2018, Tokyo, Japan, 23-27 July
2018, Volume 2, pages 81–86. IEEE Computer Society, 2018.

12. Sam Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media, Inc., 1st edition, 2015.

13. Pooja Pant, A Sai Sabitha, Tanupriya Choudhury, and Prince Dhingra. Multi-
label classification trending challenges and approaches. Emerging Trends in Expert
Applications and Security: Proceedings of ICETEAS 2018, pages 433–444, 2019.

14. Simon Schneider, Tufan Özen, Michael Chen, and Riccardo Scandariato. microse-
cend: A dataset of security-enriched dataflow diagrams for microservice applica-
tions. In 2023 IEEE/ACM 20th International Conference on Mining Software
Repositories (MSR), pages 125–129, 2023.

15. Adam Shostack. Threat Modeling: Designing for Security. Wiley, February 2014.
16. Samira Silva, Adiel Tuyishime, Tiziano Santilli, Patrizio Pelliccione, and Ludovico

Iovino. Quality metrics in software architecture. In 2023 IEEE 20th International
Conference on Software Architecture (ICSA), pages 58–69, 2023.

17. L. Sion, K. Tuma, R. Scandariato, K. Yskout, and W. Joosen. Towards automated
security design flaw detection. In 34th IEEE/ACM International Conference on
Automated Software Engineering Workshops, ASE Workshops 2019, San Diego,
CA, USA, November 11-15, 2019, pages 49–56. IEEE, 2019.

18. Dag IK Sjøberg and Gunnar R Bergersen. Improving the reporting of threats to
construct validity. In Proceedings of the 27th International Conference on Evalua-
tion and Assessment in Software Engineering, pages 205–209, 2023.

19. C. Tantithamthavorn, A. E. Hassan, and Kenichi M. The impact of class rebalanc-
ing techniques on the performance and interpretation of defect prediction models.
IEEE Transactions on Software Engineering, 46(11):1200–1219, 2020.

20. K. Tuma, L. Sion, R. Scandariato, and K. Yskout. Automating the early detection
of security design flaws. In Eugene Syriani, Houari A. Sahraoui, Juan de Lara, and
Silvia Abrahão, editors, MoDELS ’20: ACM/IEEE 23rd International Conference
on Model Driven Engineering Languages and Systems, Virtual Event, Canada, 18-
23 October, 2020, pages 332–342. ACM, 2020.

21. Pattaramon Vuttipittayamongkol, Eyad Elyan, and Andrei Petrovski. On the
class overlap problem in imbalanced data classification. Knowledge-Based Systems,
212:106631, 2021.

22. Uwe Zdun, Pierre-Jean Queval, Georg Simhandl, Riccardo Scandariato, Somik
Chakravarty, Marjan Jelic, and Aleksandar S. Jovanovic. Microservice security
metrics for secure communication, identity management, and observability. ACM
Trans. Softw. Eng. Methodol., 32(1):16:1–16:34, 2023.


