
Bridging the Gap between User Stories and Feature
Models by Leveraging Version Control Systems:
a Step towards Software Product Line Migration

Thomas Georgesa,b, Marianne Hucharda, Mélanie Königa,b, Clémentine
Nebuta, Chouki Tibermacinec

aLIRMM, Univ Montpellier, CNRS, Montpellier, France
bITK -Predict & Decide, Montpellier, France

cIRISA, University of Southern Brittany, Vannes, France

Abstract

Context: Throughout the software lifecycle, a significant amount of knowl-
edge is accumulated around the source code. In our work, we focus on agile
software requirements, particularly user stories, and on issues and merge re-
quests in version control systems, that have been opened for implementing
user stories. Objectives: The objective of this paper is to present a method
that leverages this knowledge to guide an SPL migration. Methods: We
consider merge requests in version control systems as the link between user
stories (requirements) and the source code (implementation). The method
combines Natural Language Processing (NLP) and clustering to identify fea-
tures from user stories and hierarchically organize them. Relational Concept
Analysis (RCA) is then used to compute logical rules from the hierarchy of
features, using their links with the products and the source code. The logical
rules are finally transformed into constraints in the produced feature model.
Results: The method was implemented and evaluated on a dataset from
an industrial partner. The results showed the efficiency of our method in
synthesizing feature models for an SPL migration of the partner’s code base.
Conclusion: The proposed method synthesizes feature models to guide an
SPL migration based on agile software development practices and demon-
strates its effectiveness on a real industrial dataset.
Keywords: Software Product Line, Agile Process, User Story,
Reengineering, SPL domain engineering, Feature Model, Natural Language
Processing, Formal Concept Analysis

1. Introduction

Software Product Lines (SPL) [1] are families of related software systems
that share a common core while differing in specific features. SPL provide
a means to develop highly configurable systems, enabling the rapid creation
of new software by adapting the common core to a specific set of features.
The features, both common to all products or specific to a subset of them,
are usually organized in a feature model [2], modeling which features are
required in each product, which are optional, as well as constraints linking
the features. While SPL are now a well-established way to efficiently pro-
duce highly-configurable software products, migrating an existing software
family [3] into an integrated SPL platform is still challenging and organi-
zations may be reluctant to adopt the approach. Hesitations often arise
from the lack of standard procedures guiding the process, as well as doubts
on the cost/benefit ratio [4]. Although companies own large bases of well-
documented code, they still manually build tailored applications from the
base code to meet their clients’ requirements, sometimes with a clone-and-
own strategy, i.e. duplicating an existing product and adapting it to the new
specific features.

One of the difficulties during the migration process is to extract a relevant
feature model from the existing products. This task consists in identifying all
the features of the various software products [5], then identifying the common
ones and the specific ones, and organizing them in a model specifying the
constraints existing between the features (e.g. which feature implies which
other feature, or which feature cannot appear in the same product as another
feature). In this paper, we address this issue in the context of products built
with an agile process, specifically where requirements are defined using user
stories, and a version control system (VCS) [6] is used to store and trace
project artifacts. A user story is a general explanation of a software feature,
written in natural language from the perspective of the end user. A user
story is usually written using a common template or format. In the follow-
ing, we use the most common template: the Connextra template [7]. User
stories are nowadays widely used in a large part of software projects to define
requirements. VCS platforms like GitLab or Github are a widespread sup-
port, not only to manage code artifacts, but also as a central part of project
management, directly using integrated tools to manage the user stories or
integrating external tools in the VCS platform. Therefore, our approach is
suitable for a large part of projects.

2

In this context, we have developed an automated feature model synthesis
approach based on the knowledge collected from the user stories and the way
they are linked to the product code through traceability links established
in the VCS. We have implemented this automated feature model synthesis
method using a combination of different techniques.

• Natural Language Processing (NLP) is used to analyze user stories and
identify an initial set of concrete features.

• Vectorization and Clustering are used to consider the initial set of con-
crete features and identify abstract features. These features enable us
to build preliminary hierarchies of features with refinement relation-
ships.

• Formal Concept Analysis (FCA [8]) and Relational Concept Analysis
(RCA [9]) are applied to the previous results and also take as input
the links established by the VCS between the user stories and the code
repository. These links connect user stories to files that implement
them, going through links between issues, merge operations, changes
and then files. On top of this knowledge, FCA and RCA infer inter-
connected groups of products, features, roles and code files.

• Finally, a logical analysis of the interconnected groups is performed
to infer logical constraints between features and to refine the feature
model so that it most closely reflects real-world products.

We evaluated this method on a dataset built from our industrial part-
ner’s code base and the documentation on their VCS. Our industrial partner
provides decision-support software systems for farmer and agricultural advi-
sors. The results showed that our feature model synthesis approach using
different sources of knowledge provides relevant feature models on the indus-
trial dataset. In addition, these feature models can easily be modified by an
expert to produce the actual feature model of the product line.

The rest of the paper is organized as follows. Section 2 presents an
overview of the approach, including the necessary artifacts. We then de-
tail each step of our synthesis process in Sect. 3, illustrating it with a small
example drawn from the dataset provided by our industrial partner. Sec-
tion 4 describes the evaluation with the actual industrial dataset, followed
by a discussion and an analysis of the obtained results. Related work is

3

presented in Sect. 5. We summarize the contributions and outline future
perspectives of this work in Sect. 6.

2. Background and overview

In this section, we provide background on Software Product Lines (Sect.
2.1), then we give an overview of our approach and detail its inputs (Sect.
2.2).

2.1. Software Product Lines
Software Product Lines (SPL) are families of products sharing a common

basis but also owning variation points. Usually, both common and variant
characteristics of an SPL are called features and are organized in a feature
model. An example of feature model is given in Fig. 1 for an SPL of web
browsers. It has a main tree structure, with decorated edges. In the example,
WebBrowser is the root of the feature model. The edges represent parent-
child relations between features: to have a child present, the parent has to
be present. Navigation is a mandatory feature under WebBrowser: it has
to be present if WebBrowser is present. TextToSpeech and VoiceControl
are optional, they may be present or not. Tabbing and Spatial form an
or-group under Navigation: if navigation is present, there can be tabbing
or spatial navigation, or both. Classic and Advanced form a xor-group
under TextToSpeech: if TextToSpeech is present, it has to be Classic or
Advanced, but not both. Xor-groups are also called alternative groups. Some
constraints on features cannot be expressed with tree edges, they are called
cross-tree constraints, and often presented in textual form, below the feature
model. In the example, the presence of Advanced text-to-speech implies the
presence of the VoiceControl feature, while the features VoiceControl and
Spatial are mutually exclusive. A product corresponds to a configuration
of features, which must be valid w.r.t the feature model. For example, the
configuration {WebBrowser, Navigation, Tabbing, VoiceControl} is valid,
but the configuration {WebBrowser, Navigation, Tabbing, TextToSpeech}
is not valid, it is incomplete, as it violates the alternative group constraint.
According to this constraint, when TextToSpeech is present, either Classic,
or Advanced option has to be chosen. As another example, the configuration
{WebBrowser, Navigation, Spatial, VoiceControl} is not valid because
it violates the exclusion cross-tree constraint “␣pSpatial ^ V oiceControlq”

4

appearing under the feature model of Fig. 1 stating that Spatial cannot be
present at the same time as VoiceControl.

Each feature may be abstract or concrete. Abstract features are used
to structure and document the feature model, but are not directly bound
to implementation artifacts. Concrete features are bound to implementa-
tion artifacts; one may note that leaves of a feature tree should be concrete
features.

WebBrowser

TextToSpeech NavigationVoiceControl

AdvancedClassic SpatialTabbing

Legend:
Mandatory

Optional

Abstract Feature

Concrete Feature

Or Group
Alternative Group

Advanced ⇒ VoiceControl
¬(Spacial ∧ VoiceControl)

Figure 1: An example of a feature model for a WebBrowser product line

2.2. Overview of the proposed process

Products

Inputs Output

User stories

Merge

Change

Source code files

VCS link

VCS link

VCS link

NLP +
Clustering Abstract features

Features

Roles

RCA Feature model

Figure 2: Process Overview: Automated process from products, user stories linked to the
source code via VCS links (inputs) to the feature model (output) using NLP, clustering,
and RCA. Rectangle boxes represent artifacts, while ellipses represent processes. Grey
boxes indicate artifacts originating from the VCS.

5

Our process, outlined in Fig. 2, is an automated method for feature model
synthesis from the sets of user stories of a product family. The process is
enriched by the use of links between the user stories and the code repository
managed by a VCS platform. First, we apply natural language processing
(NLP) techniques to identify fine-grained features and the roles present in
the user stories. Next, we use clustering techniques to group related features
into candidate abstract features. At this stage, the result is a tree structure
for the feature model: the root at the top level, abstract features on the
second level, and concrete features as the leaves, each linked to an abstract
feature. Finally, we apply RCA to infer logical constraints, enriching the
feature model with information about mandatory versus optional features
and with cross-tree constraints.

2.3. Inputs: User stories and code repository managed in a VCS
The inputs of our approach are the product user stories and the code

repository managed by the VCS.
User stories [7] are a usual way to define requirements in agile projects.

Each user story expresses, in natural language, a description of a software
system’s features from the user’s point of view. A user story is written fol-
lowing a common template or format. In what follows, we employ the widely
used Connextra template [7], so that each user story adheres to the following
format: “As a [persona], I want to [action], so that [goal]”.

• “persona” is a typical user: personas represent, as the roles, groups of
individuals who can perform some actions.

• “action” denotes what the persona wants to perform within the software
system. We treat this action as the feature conveyed by the user story.

• “goal” is the intended persona’s objective; it explains why the persona
performs the action.

Our industrial partner does not express the goal in the user stories, so
in the rest of the paper the user stories follow the form: “As a [persona], I
want to [action]”. User stories are supposed to be available in the VCS, that
guides us to identify the relations between the requirements and the code
files, as summarized in Fig. 3. In this work we assume that user stories are
directly stored in the VCS in the form of dedicated issues, that is a common

6

user-story
(stored in VCS issue) Merge Change File

Source codeRequirements

1 * 1 1..* * 1

Figure 3: Focus on the links between user requirements (user stories) and code files through
the VCS. A user story is implemented by at least one merge which is a set of at least one
change applied to one file.

practice. However, they can be stored in an external tool, like Jira, as soon
as they are linked to the operations on the files through the VCS.

The second element we use is the code repository managed by the VCS,
which records the changes that occurred during the code production and
provides traceability links between the different artifacts. More precisely, we
use the information of merges, and the code files themselves. A merge is a
classical operation in VCS platforms. It corresponds to a global modifica-
tion/commit in a project. It contains a non empty list of changes (creation,
edition or deletion) in the project’s files. We assume that each merge refers
to a user story. As soon as a user story is implemented, it is thus referred
by at least one merge. The code files we deal with refer to all the created,
edited or deleted files involved in the implementation of a user story.

2.4. Output: Feature model
The output of the process is a feature model representing the features

of the products, along with their relationships and constraints. The root of
the feature model represents the product family. Under the root, a hierarchy
of features is organized using optional and mandatory relationships, as well
as or groups and alternatives. Features may be concrete (the leaves of the
feature tree are concrete) or abstract (abstract features are a way to organize
the variability in the feature model). The output feature model also contains
cross-tree constraints in the form of logical expressions involving features. We
consider boolean features, as the features may be present or absent in the
product, and we do not introduce cardinalities or other advanced notations
in the feature model. To build the feature model, we use FeatureIDE [10]
to transform the description of the feature model generated by our approach
into a feature model diagram.

7

3. Feature model synthesis

In this section, we introduce our feature model synthesis method. It is
illustrated with a small example drawn from our industrial partner’s case
study (Sect. 3.1). We detail the two main parts of the overview figure (Fig.
2): the NLP and clustering part, drafted in Fig. 4 (Sect. 3.2), and the RCA
part, drafted in Figures 6 and 7, with a detailed summary in Fig. 15 (Sect.
3.3). Finally, Sect. 3.4 introduces the tools.

3.1. Illustrative example
For confidentiality reasons, we cannot share all the company’s dataset

and the obtained results. However, we present samples from these. The three
products of the example are decision-support software systems for farmers
and agricultural advisors, dedicated respectively to the culture of almonds,
vines and orchards. The inputs are the user stories of the products, with the
related artifacts from a GitLab instance including the code file references.

To collect user stories and the related VCS artifacts, we leverage the pos-
sibilities offered by the VCS, which conveys traceability between the source
code and the user stories that we extract using the VCS API. The user

Table 1: Relation between user stories (rows) and products, i.e. software systems
(columns) that they specify. Almond, Vine and Orchard are three decision-support soft-
ware for crop management. A User story can be part of the specification of several software
systems.

Products
User Stories Almond Vine Orchard
As a farmer I can refresh the predicted weather x x
As a farmer I can CRUD plots x x x
As a farmer with a plot I can edit the parameters of a plot (current season) x x
As a farmer with a plot I can sort my plots in the list x
As a farmer with a plot I can filter my plots in the list x
As a farmer with a plot I can export observation data for a plot x
As a farmer with a plot I know when my plots will be in danger x x
As a farmer irrigator I can manage my irrigations and recommendations in my favorite unit x
As a farmer irrigator I choose my preferred irrigation unit in my user-settings x
As a farmer irrigator I can view my irrigation recommendations in my favorite unit x x
As an admin I can CRUD a farmer x x
As an admin I can relaunch all failed simulation x x x

stories of the three products are shown in Table 1. They do not contain
the “So that” part, as it is the practice of our industrial partner to omit it.
Table 2 shows a shortcut version of data populating the model of Fig. 3. A
user story, restricted to its feature part to simplify the table, is connected,

8

Table 2: Relation between features (rows) and names of the files of the code repository
(columns) that implement them. A feature can be implemented in different files and
several features can be implemented in the same file. This mapping describes the links
between requirements and their implementation artifacts.

Files
Features admin weather farmer plotList danger irrigation recommendation export observation plot user-settings alert
can refresh the
predicted weather

x x

can CRUD plots x x
can edit the parameters
of a plot current season

x x

can sort my plots
in the list

x x

can filter my plots
in the list

x x

can export observation
data for a plot

x x

know when my plots
will be in danger

x x

can manage my irrigations
and recommendations
in my favorite unit

x x

choose my preferred
irrigation unit
in my user-settings

x x

can view my irrigation
recommendations
in my favorite unit

x x

can CRUD a farmer x x
can relaunch all
failed simulation

x x

through this table, directly to the files implementing it, i.e. bypassing, for
the sake of the simplified illustration, the merge and change artifacts of the
VCS.

3.2. Towards a feature tree: NLP for role extraction, and for fine-grained
and coarse-grained feature extraction

Natural Language Processing (NLP) techniques have two purposes in our
approach. The first is the identification of the roles and the features from
the user stories. We consider in the following that an action corresponds to
a small-grained feature. The second purpose is the identification of clusters
of features to determine abstract (coarse-grained) features.

We first decompose each user story, separating the role and the feature
(Step NLP 1 in Fig. 4). Due to the well-defined format of the user stories,
we can parse them to identify the first nominal group, and the feature as the
content that follows. This step results in features and links between features
and roles. Table 3 shows the links between features and roles. In the user
story As a farmer, I can CRUD plots, the role is farmer and the feature is
can CRUD plots. The link between the feature and the role appears as a
cross in the table.

9

US

(NLP 1)
role/feature
separation

(NLP 2)
word2vec

(NLP 3)
elbow

(NLP 4)
kmeans

(NLP 5)
Graphical

organization

Features x Roles
(Table 3)

Features
(rows of Table 3)

Vectorized Features

#Clusters

Features x AbstractFeatures
(Table 4)

Feature tree
(Fig. 13
without

decorations)

Figure 4: NLP and clustering steps: user stories are separated into role and feature
parts (NLP 1); word2vec is applied to features (NLP 2); resulting vectorized features are
analyzed with elbow to compute a cluster number (NLP 3); k-means is applied to obtain
abstract features (NLP 4); the features (including abstract ones) are used to draw the
skeleton of the feature model, i.e. the feature tree (NLP 5).

Then the f features are clustered into c clusters thanks to a pipeline of
three methods. First we use a pre-trained word2vec [11] model for vector-
ization to represent our features as vectors (Step NLP 2 in Fig. 4). In our
process the word2vec model was pre-trained on word2vec-google-news-300
with 3 million words and sentences. The second step of our pipeline is to
determine the optimal number of clusters by using the elbow method (Step
NLP 3 in Fig. 4). The elbow method gives the optimal number of clusters by
calculating the within-cluster-sum of squared errors (WSS) and picking the
number of clusters when the WSS stops decreasing. It is an heuristic used
to determine the optimal number c of clusters based on the evolution of the
variance for each number of clusters. In the final step (Step NLP 4 in Fig.
4), once the features had been vectorized and the optimal number of clusters
determined, we apply k-means clustering [12]. K-means method arranges our
features in the number of clusters given by the elbow method. Each obtained
cluster (group of features) is assumed to have consistent semantics, and is
candidate to be an abstract feature.

10

Table 3: Relation between features (rows) and roles (columns) that have access to them.
Some roles are specializations or extensions of others, e.g. farmerwithplot specializes
farmer.

Roles
Features farmer farmerwithplot farmerirrigator administrator
can refresh the predicted weather x
can CRUD plots x
can edit the parameters of a plot current season x x
can sort my plots in the list x x
can filter my plots in the list x x
can export observation data for a plot x x
know when my plots will be in danger x x
can manage my irrigations and recommendations
in my favorite unit

x x

choose my preferred irrigation unit in my user-settings x x
can view my irrigation recommendations
in my favorite unit

x x

can CRUD a farmer x
can relaunch all failed simulation x

In order to name our clusters, we identify the most important words by
removing the stop words and using the most frequent words remaining in
the cluster. More precisely, after removing the stop-words from the clustered
features of a user story, we keep at most the three most frequent words to
name the involved cluster. These names will be renamed or refined at a later
stage by an expert while reviewing the feature model. After the NLP step,
we obtain the user stories, the roles, the features and the abstract features
that populate the model of Fig. 5. Table 4 shows abstract features that can
be obtained in our example after a run of the NLP process. Two of them
group more than one feature and aim to generalize or describe the features
of the group. For example plot unit list generalizes features related to plot
list or to unit.

Table 4: Relation between Features (rows) and Abstract Features (columns).

Abstract Features

Features
refresh
predicted
weather

crud
plots

plot
edit
parameters

plot
unit
list

crud
farmer

can refresh the predicted weather x
can CRUD plots x
can edit the parameters of a plot current season x
can sort my plots in the list x
can filter my plots in the list x
can export observation data for a plot x
know when my plots will be in danger x
can manage my irrigations and recommendations in my favorite unit x
choose my preferred irrigation unit in my user-settings x
can view my irrigation recommendations in my favorite unit x
can CRUD a farmer x
can relaunch all failed simulation x

11

The backbone of a feature model is obtained using a graphical represen-
tation of this table as a tree (Step NLP 5 in Fig. 4). Below the root node
of this tree, we introduce sub-nodes associated with the abstract features.
Then each feature appears as a node linked to the abstract feature to which
it belongs. For our example, we obtain the tree structure of the feature model
shown in Fig. 13.

Product User Story

Feature

Role

Abstract
Feature

1..* *
1..* 1

1..* 1

1..* 1

Figure 5: A Model of Products, User stories, Roles, Features and Abstract Features.

3.3. Towards a Feature Model: FCA/RCA to Derive Logical Constraints that
Enhance the Feature Tree

The tree derived from the NLP step can be considered as an organization
of features using simple ontological semantics. To obtain a feature model,
we enhance this initial structure with logical constraints. The logical con-
straints are of several types. Some indicate which features are mandatory
or optional (default choice), some highlight or groups or alternatives, lastly,
others capture cross-tree constraints. Our method consists in exploiting the
available information on products (ranging from user stories to VCS data)
using Formal Concept Analysis (FCA, presented by Ganter et al. [8]) for
its capability to structure and formalize this information in various forms,
including logical formulas.

We proceed as summarized in Fig. 6. From the inputs (analyzed user
stories linked to products, features and code repository managed by a VCS,
see Figures 3 and 5), we apply an extension of FCA called Relational Concept
Analysis (RCA [9]) to extract a base of implications representing the logical
constraints. More specifically, we rely on the widely used Duquenne–Guigues
base of implications [13].

Inputs Base of
implications

Simplified Base
of Implications

Constraints in
the Feature Model

RCA simplification
interpretation

guidelines

Figure 6: Extraction of FM constraints.

12

Figure 7 is a zoom on this first step, i.e. RCA application. The inputs
are products, user stories, roles, features, abstract features, merges, changes
and files, structured as mentioned in Figures 3 and 5. The handled ele-
ments (products, user stories, etc.) are linked through several relations, for
example products are concerned by several user stories, and user stories are
implemented through a succession of merges that concern changes in files.
Our objective is to observe what are the shared links, so as to infer elements
or groups of elements that are always present together, never present to-
gether, etc. From the inputs, we build two kinds of tables, called Formal
Contexts (FC) and Relational Contexts (RC). Those tables are formally de-
scribed in next sections, but simply said Formal Concepts describe entities
(products, user stories, etc) with basic characteristics they have, while Re-
lational Contexts describe entities with the links they entertain with other
entities. The links follow the structure of the relations of Figures 3 and 5.
RCA analyzes these tables and can produce a set of observed rules, in the
form of a base of implications. These implications indicate that for example
a given set of features is always seen with a given set of changes of files. The
raw implications that are obtained are then simplified, and used to constrain
the feature model.

The rest of this section is organized as follows. We first draw the main
lines of logical constraints extraction with FCA in Sect. 3.3.1 and explain
how they can enhance the feature model. As our inputs (Figures 3 and 5)
follow an Entity-Relationship model, we use RCA to extract the base of im-
plications representing the logical rules, as detailed in Sect. 3.3.2. The raw
implications obtained using RCA are then simplified through an automated
process described in Sect. 3.3.3, to obtain more understandable and action-
able implications. Then guidelines to interpret the RCA implications into
constraints in the feature model are applied, as presented in Sect. 3.3.4. We
illustrate these guidelines using the whole example to obtain a candidate fea-
ture model, intended to be refined afterwards by a human expert. Table 5
describes the added value of each technique and conceptual structure we use.

3.3.1. Logical Constraints extraction with FCA
As reported by Galasso et al. [14], there is a continued track of research

that leverages FCA for representing and extracting logical constraints in the
field of SPLE. The simplest form of data on which this extraction can be
made is a set of product configurations, i.e. products and their respective

13

id_r_1 id_r_2 ...

r1 x

r2 x

...

id_us_a id_us_b ...

us1 x

us2 x

...

id_f_1 id_f_2 ...

f1 x

f2 x

...

f1 f2 ...

us1 x

us2 x

... x

r1 r2 ...

f1 x

f2 x

... x

User stories

Features

Roles

Features involve roles

User stories involve features

Formal contexts

Relational contexts

...

...

Input :
- products
- user stories
- roles
- features
- abstract features
- merges
- changes
- files
structured as mentionned
in Fig. 3 and 4.

RCA

- I1 : P1 implies C1
- I2 : P2 implies C2
- ...
Where P1 and P2 are premises,
C1 and C2 are conclusions

Bases of implications

Figure 7: Obtaining a base of implications using RCA.

feature lists. Table 6 shows a reduction (with shorten names) of Table 1 to
the products and user story features, considering that there is a one-to-one
mapping between the user stories and their features. Although this is not
the general case (see Fig. 5), it does hold in our practical case study. Using
FCA vocabulary, such a table is called a Formal Context, with objects (the
software products) described by attributes (the features). FCA provides two
main outcomes for data analysis: concept lattices and propositional logical
expressions (e.g. implications).

Table 5: The added value of each of the techniques and conceptual structures.

Technique Added value

FCA and RCA Extract structured logical relations from our user stories, features, and code.

Base of Implications Produces minimal, non-redundant logical dependencies.

Simplification Reduces redundancy in the implications and improves readability of the implication base.

Feature Model Constraints Maps simplified implications into constraints:
mandatory/optional features, or/alternative groups, and cross-tree constraints.

14

Concept lattices (and other derived structures) classify objects accord-
ing to their shared attributes in concepts organized in a hierarchy, offering a
graphical view. The concept lattice associated with the formal context of Ta-
ble 6 is shown in Fig. 8. Each concept is an object group (extent) associated
with the group of their shared attributes (intent). In addition, in a concept,
none of the associated groups can be extended: if an object is added, an
attribute is lost (it cannot be shared by the added object); symmetrically, if
an attribute is added, an object is lost (it cannot have the added attribute).
Concepts are organized in a specialization hierarchy based on group inclu-
sion. As attributes are top-down inherited and objects are bottom-up inher-
ited, a simplified form of concepts is used in the representations. In Fig. 8,
Concept_product_13 thus groups the bottom-up inherited objects Vine and
Almond that share the top-down inherited attributes CRUDplots, relaunch,
and the introduced attribute view.

A logical view can be extracted from the concept lattice, or from the
formal context. For example, Galasso et al. [15] analyzed the concept lattice
to derive specific logical constraints that usually come with a feature model
such as co-occurrences, binary implications, mutual exclusions or candidates
or groups or alternatives. This approach may generate numerous constraints,
and among them accidental ones have to be discarded. Another approach
is to leverage bases of implications, that has always been an active track of
FCA domain [16, 17]. For an attribute set A, an implication is a pair of
two attribute sets pP,Cq, with premise P Ď A, and conclusion C Ď A. It
is denoted by P ñ C. When P is empty, this is denoted as ñ C. pP,Cq
is a valid implication in a formal context if any object that owns attributes
of P also owns attributes of C. A base of implications is a set of valid,
non-redundant implications from which any other valid implication can be
derived using inference rules. Each implication has an absolute support level
(or support for short), which corresponds to the number of products holding
the rule (having the attributes of the premise).

Table 6: Formal context Products ˆ Features, based on the running example. The feature
name is reduced to the first word, except when a disambiguation is needed (e.g. CRUD).

product refresh CRUDplots edit sort filter export know manage choose view CRUDfarmer relaunch
Vine x x x x x x x x x
Almond x x x x
Orchard x x x x x x x x

15

Concept_product_7

CRUDplots
relaunch

Concept_product_8

refresh
edit
know

CRUDfarmer

Concept_product_9

sort
filter

Orchard

Concept_product_10

Concept_product_11

export
choose

Vine

Concept_product_12

manage

Almond

Concept_product_13

view

Figure 8: Concept lattice of the formal
context of Table 6.

(I1) <3> ñ CRUDplots, relaunch
(I2) <2> CRUDplots, CRUDfarmer, relaunch ñ re-
fresh, edit, know
(I3) <2> CRUDplots, know, relaunch ñ refresh, edit,
CRUDfarmer
(I4) <2> CRUDplots, edit, relaunch ñ refresh, know,
CRUDfarmer
(I5) <2> refresh, CRUDplots, relaunch ñ edit, know,
CRUDfarmer
(I6) <1> CRUDplots, choose, relaunch ñ refresh, edit,
export, know, view, CRUDfarmer
(I7) <1> CRUDplots, manage, relaunch ñ view
(I8) <1> CRUDplots, export, relaunch ñ refresh, edit,
know, choose, view, CRUDfarmer
(I9) <1> CRUDplots, filter, relaunch ñ refresh, edit,
sort, know, CRUDfarmer
(I10) <1> CRUDplots, sort, relaunch ñ refresh, edit,
filter, know, CRUDfarmer
(I11) <1> refresh, CRUDplots, edit, know, view,
CRUDfarmer, relaunch ñ export, choose
(I12) <0> refresh, CRUDplots, edit, export, know,
manage, choose, view, CRUDfarmer, relaunch ñ sort,
filter
(I13) <0> refresh, CRUDplots, edit, sort, filter, ex-
port, know, choose, view, CRUDfarmer, relaunch ñ

manage

Table 7: DBGI of Table 6. Implications
are ordered by decreasing absolute sup-
port (indicated between < >).

There exists a range of implication bases with various properties [16, 17].
In this work, we choose the Duquenne-Guigues base of implications (DGBI)
for its concision, as the DGBI is a minimal cardinality base [13]. For Table
6, the DGBI contains 13 implications with supports equal to 0, 1, 2 and 3
respectively. For example the following implication holds for the two products
Vine and Orchard, hence has absolute support 2:

CRUDplots, CRUDfarmer, relaunchñ refresh, edit, know rImps

In the DGBI, the implication set is non-redundant, yet individual implica-
tions may still contain redundant information, leaving room for simplifica-
tion. For example another implication is (with support 3, thus held by the 3
products):

ñ CRUDplots, relaunch

Using this information, implication rImps can be simplified as:

CRUDfarmer ñ refresh, edit, know

One can note that all rules are valid, even if the support is not maximal.
The rules have a support that corresponds to the number of objects to which
they apply. There may be objects to which they do not apply (the support is
then not maximal) but they remain true. Indeed, the rules are implications
and when the premise is false, the evaluation of the implication is true.

16

The whole set of implications for Table 6, without simplification, thus
as they are produced by the original DGBI definition and the implementing
tools, is shown in Table 7. Note that the implications are usually computed
directly from the formal context.

We give below pieces of information that can be extracted from the im-
plications, and how they could enhance the feature model. Some of them can
directly be deduced from a single implication, others can be deduced from
groups of implications.

(I1) indicates two mandatory features (CRUDplots, relaunch). (I7) high-
lights the fact that manage implies view. (I11) indicates that having re-
fresh and view implies having export. (I2) to (I5) show the co-occurrence of
CRUDfarmer, know, edit, and refresh, as they are equivalent. Indeed, after
removing the two mandatory features CRUDplots and relaunch, each feature
among CRUDfarmer, know, edit and refresh implies the three other features.
(I6) and (I8) show the co-occurrence of export and choose, for similar rea-
sons. (I9) and (I10) show the co-occurrence of sort and filter. From (I12)
and (I13), whose support is 0, we can deduce mutual exclusions: we do not
have at the same time export and manage (I12), we do not have at the same
time export and sort (I13).

There is a strong connection between the implication base and the set of
concept intents [18]. A procedure to obtain the concept intents is as follows.
For every feature set S0, apply every implication P ñ C of the base whose
premise P is included in S0, giving a new feature set S1 “ S0 Y C. Then
iterate the step on S1, giving S2, and so on, until Si “ Si´1 (no new feature
is discovered at a step).

For example, if we take set tviewu, by (I1), we obtain tview,CRUDplots,
relaunchu (intent of Concept_product_13) and no other implication ap-
plies.

If we take tmanageu, by (I1), we obtain tmanage,CRUDplots, relaunchu.
I7 can now be applied, giving tmanage, CRUDplots, relaunch,viewu (intent
of Concept_product_12) and no other implication applies.

If we take tsort, exportu, by (I1), we get tsort, export,CRUDplots,
relaunchu; by (I8) we get tsort, export, CRUDplots, relaunch, refresh, edit,
know, choose,view,CRUDfarmeru; by (I10) we get tsort, export,
CRUDplots, relaunch, refresh, edit, know, choose, view, CRUDfarmer,
filteru; then by (I13) we complete by manage, and we get the whole feature
set tsort, export, CRUDplots, relaunch, refresh, edit, know, choose, view,
CRUDfarmer, filter, manageu (intent of bottom Concept_product_10).

17

This shows the role of implications with support 0, when they exist, which is
to support completion of a feature set to obtain the bottom concept intent,
which rarely corresponds to a valid configuration.

It can be observed that this procedure enumerates configurations cor-
responding to three situations: (1) a valid configuration (when the corre-
sponding extent introduces a product, e.g. intent of Concept_product_12
which introduces Almond) —this means that the product has exactly the
whole feature set of the concept, i.e. inherited and introduced features; (2)
an incomplete configuration (when the corresponding extent does not intro-
duce a product, e.g. intent of Concept_product_13, which groups Vine and
Almond introduced in subconcepts); (3) an invalid configuration when the
concept intent is the one of the bottom concept and the extent of the bottom
concept is empty. The last case happens when there is no product having all
features, which is a current case. Only one invalid configuration (the whole
feature set) can be produced of this type, it is thus easy to discard.

A theoretical result is that it is equivalent to dispose of the formal context
or of the concept lattice (one can be computed from the other); from the
implication base it is possible to know the structure of the concept lattice;
but it is not possible to infer if an intent is the attribute set of an object (the
extent part), or an intersection of several attribute sets, or the bottom [8].

The foregoing explanation is important to know in order to avoid over-
interpreting what the implication base means, and to appropriately use it.
The base and the supports have to be mainly used as a set of observed (or
not observed when support is 0) valid dependencies between features. The
dependencies can serve to exhaustively enumerate all valid configurations,
and find incomplete ones also (with the particular case of the often invalid
bottom configuration). But the set of not observed dependencies is not ex-
haustive, only those that serve to obtain all configurations are present in the
base. Thus all mutual exclusions between features cannot be extracted, con-
trarily to the work made by Carbonnel et al. [15]. With the DGBI, we gain
concision at the cost of missing explicit expression of some mutual exclusions
by this approach. We hypothesize in our work that many mutual exclusions
are accidental, due to the low number of analyzed products.

3.3.2. Logical Constraints extraction with RCA
In its simplest setting, FCA allows to extract variability in a set of prod-

ucts described by features. In more complex settings, other artifacts and
more complex descriptions may participate to induce variability constraints.

18

This is the case in our dataset, with the artifacts presented in models of
Figures 3 and 5. Before going into the complexity of our whole model, we
explain how Relational Concept Analysis (RCA, [9]) can be applied to ex-
tract concept lattices and implications in a simplified model composed of
products, features, and abstract features that group the features. This sim-
plified model is shown in Fig. 9. Features, which were native attributes of the
product with FCA, are now promoted as objects with their own description:
in our case, features are described by the abstract features they belong to.

Product Feature AbstractFeature* 1..* 1..* 1

Figure 9: Simplified model to illustrate the application of RCA to relational models. The
model is composed of products, features, and abstract features.

The input dataset for RCA, also called relational context family (RCF), is
close to an entity-relationship model. It is composed of two kinds of contexts
(i.e. tables): formal contexts and relational contexts, as illustrated in Table 8
that shows the RCF associated with the model of Fig. 9. A formal context is a
set of objects, a set of native (also called primitive) attributes, and a relation
which describes whether an object has an attribute. For example, a formal
context Product associates a product (object) with its identifier (attribute);
another formal context Feature associates a feature (object) with its identi-
fier (attribute). A relational context is a relation between objects from the
same formal context or between objects of two formal contexts. For example
a relational context product2feature connects a product (object of the for-
mal context Product) to its features (objects of the formal context Feature).
The RCF of Table 8 comprises three formal contexts: Product, Feature, and
Abstractfeature. The native attributes of these three formal contexts are
here simple identifiers, and the formal contexts are thus diagonal tables. In
rows, we have the objects, and in columns, we have identifiers of objects. In
this particular case, objects and their identifiers are denoted by the same text
in the table, but they refer to elements of different natures. This same Table
8 also shows the two relational contexts of the RCF: product2feature con-
nects products to their features, while feature2abstractfeature connects
features to the abstract features that group them into clusters.

With RCA, concept lattices are built through an iterative process. At
the initial step, one concept lattice is built for each formal context, thus
based only on the primitive attributes. In the following steps, each formal

19

Table 8: Relational Context Family PFA based on the running example reduced to prod-
ucts (P), their features (F), and the abstract features (A) that group the features. The
feature name is reduced to the first word, except when a disambiguation is needed (e.g.
CRUD). The abstract feature name is reduced to the initials of its terms. When objects are
described by their identifiers, this gives diagonal contexts (e.g. the object refresh identi-
fier is refresh). Tables Product, Feature and AbstractFeature are the formal contexts.
Tables feature2abstractFeature and product2feature are the relational contexts.

Product Vine Almond Orchard
Vine x
Almond x
Orchard x

Feature refresh CRUDplots edit sort filter export know manage choose view CRUDfarmer relaunch
refresh x
CRUDplots x
edit x
sort x
filter x
export x
know x
manage x
choose x
view x
CRUDfarmer x
relaunch x

Abstractfeature rpw cp pep pul cf
rpw x
cp x
pep x
pul x
cf x

feature2abstractFeature rpw cp pep pul cf
refresh x
CRUDplots x
edit x
sort x
filter x
export x
know x
manage x
choose x
view x
CRUDfarmer x
relaunch x

product2feature refresh CRUDplots edit sort filter export know manage choose view CRUDfarmer relaunch
Vine x x x x x x x x x
Almond x x x x
Orchard x x x x x x x x

context, that is the source of a relational context, is extended with relational
attributes. A relational attribute is an expression composed of a scaling
operator (e.g. D), the name of a relational context (e.g. product2feature
or feature2abstractfeature), and a concept from the target formal context
(e.g. a concept built on top of the formal concept Product or on top of the
formal context AbstractFeature respectively). For example, let us consider
an excerpt of the concept lattices built by RCA and presented in Fig. 10. In
Fig. 10 the intent and extent of several concepts seem to be identical, but in
the extents we find objects, and in the intents we find identifiers of objects
(this occurs when the context is diagonal, as already explained).

At step 0, abstract feature concepts CAF_31 and CAF_32 respectively
group and represent single abstract features cp and pep. At step 1, the rela-

20

tional attribute Dfeature2abstractfeature (CAF_32) is generated and it is as-
signed to features edit, export, and relaunch as they are all connected to pep
by at least one feature2abstractfeature link. The existence of this relational
attribute induces the creation of CF_37, a feature concept which groups edit,
export, and relaunch. At step 2, the relational attribute Dproduct2feature
(CF_37) is generated and assigned to all products, as all of them own at
least one feature among those of CF_37 extent. Other operators can be
used, such as @ or Ě, and variants with percentages, but in this work, we
only used D. The creation of these relational attributes is made systemati-
cally and they are used to extend the initial formal contexts. The extended
formal contexts are then used to compute implication bases, as in the FCA
case. One implication base is computed for each extended formal context
and they can serve various purposes, as explained later.

CP_5

∃product2feature(CF_14)
∃product2feature(CF_17)
∃product2feature(CF_27)
∃product2feature(CF_37)
∃product2feature(CF_38)

Product lattice
(excerpt)

Feature lattice
(excerpt)

Abstract Feature lattice
(excerpt)

CF_17

CRUDplots
∃feature2abstractFeature(CAF_31)

CRUDplots

CF_37

∃feature2abstractFeature(CAF_32)

CF_18

edit

edit

CF_21

export

export

CF_27

relaunch

relaunch

CAF_31

cp

cp

CAF_32

pep

pep

Figure 10: Excerpt of the concept lattices for products, features and abstract features
produced by RCA. Dotted arrows (manually added on the figures produced by FCA4J)
highlight the connections which are done between the concepts through the relational
attributes.

3.3.3. Simplification of rules in the rule base
The obtained rules in the implication base are quite difficult to read, and

the raw rules may be simplified, in four different and complementary ways.

• First, the relational attributes present in the premise may be very long
and difficult to interpret. In some cases, they can be simplified, as
explained in the following. This simplification is made automatically.

• Second, the relational paths can be simplified for a better readability.
This simplification is also explained in the following, and is also made
automatically.

21

• Third, in certain cases, cardinalities in the treated data may lead to
simplifications. When a user story has a 1:1 relationship with a fea-
ture, we simplify it automatically by using the feature directly. This
simplification improves readability by reducing the complexity of the
relational attributes. In general, a feature can be in several user stories
(as shown in Fig. 5) but in the dataset of our industrial partner, a fea-
ture is in a single user story. We have thus a 1:1 cardinality between
feature and user story, and we have removed the user story entity from
the model and the input of our algorithms (as seen in Fig. 9), without
loss of information. This simplification is made automatically and can
be added or removed as necessary.

• Fourth, there may exist redundancies in the basis that may be cleaned,
as explained in Sect. 2. This cleaning could be automated with a logical
approach, however, from an ontological point of view, discussions with
several domain experts led us to let the expert remove the redundancies,
as redundancies are sometimes useful from an ontological point of view,
to ease the comprehension of concepts.

To alleviate and simplify the reading of the relational attributes and of the
implications, we use a simplification adapted from [19]. In this simplifica-
tion, the target concept C of a relational attribute is replaced by the at-
tributes of the intent of C restricted to the introduced attributes. These
introduced attributes are taken at the time of the concept creation. For exam-
ple, Dfeature2abstractfeature(CAF_32) is rewritten into Dfeature2abstract-
feature(pep), as CF_32 has been created to introduce pep. This is done re-
cursively, and Dproduct2feature(CF_37) is rewritten Dproduct2feature(Dfeat-
ure2abstractfeature(CAF_32)) and then Dproduct2feature(Dfeature2abstract-
feature(pep)). When the intent contains more than one introduced attribute,
they are connected with symbol &. When the intent contains no introduced
attribute, it is replaced by the attributes of the intent of C, that are thus all
inherited. The result is shown in Fig. 11, where the relational attributes of
Fig. 10 have been rewritten using this mechanism.

Table 9 shows the product formal concept of Table 8 extended with the
relational attributes rewritten with the simplification. Dp2f(...) is a shorten
version of Dp2f(refresh &CRUDplots &edit &sort &filter &export &know
&manage &choose &view &CRUDfarmer &relaunch).

To illustrate which new information can be obtained with this setting, we
discuss the implication of support 3 which is included in the DGBI and is as

22

CP_5

∃product2feature()
∃product2feature(CRUDplots)
∃product2feature(relaunch)

∃product2feature(∃feature2abstractFeature(pep))
∃product2feature(∃feature2abstractFeature(pul))

Product lattice
(excerpt)

Feature lattice
(excerpt)

Abstract Feature lattice
(excerpt)

CF_17

CRUDplots
∃feature2abstractFeature(cp)

CRUDplots

CF_37

∃feature2abstractFeature(pep)

CF_18

edit

edit

CF_21

export

export

CF_27

relaunch

relaunch

CAF_31

cp

cp

CAF_32

pep

pep

Figure 11: Excerpt of the concept lattices for products, features and abstract features
produced by RCA after simplification of the relational attributes.

Table 9: Extended formal context for products during RCA running. The product context
of Table 8 has been extended with the relational attributes. product2feature has been
shorten into p2f. feature2abstractfeature has been shorten into f2a.

product Vine Almond Orchard Dp2f() Dp2f(refresh) Dp2f(...) Dp2f(CRUDplots) Dp2f(edit) Dp2f(sort) Dp2f(filter) Dp2f(export)
Vine x x x x x x
Almond x x x
Orchard x x x x x x x
product Dp2f(know) Dp2f(manage) Dp2f(choose) Dp2f(view) Dp2f(CRUDfarmer) Dp2f(relaunch) Dp2f(Df2a(pep)) Dp2f(Df2a(pul))
Vine x x x x x x x
Almond x x x x x
Orchard x x x x x

follows:
(I1R) <3> => Dproduct2feature(), Dproduct2feature(CRUDplots), Dproduct2feature(rela-

unch), Dproduct2feature(Dfeature2abstractFeature(pep)), Dproduct2feature(Dfeature2abs-
tractFeature(pul))

Compared to the initial form of this implication (I1), in the FCA setting,
the relational attributes indicate in addition that all products have:

• at least a feature (by Dproduct2feature())

• at least a subfeature of pep (by Dproduct2feature(Dfeature2abstract-
Feature(pep)))

• at least a subfeature of pul (by Dproduct2feature(Dfeature2abstract-
Feature(pul)))

As a consequence, pep and pul are mandatory. In addition, in the feature
model, they are candidate to be parent of a group.

23

To even improve readability of the implications, the relational path, i.e.
the succession of <scaling operator><relation> is removed in the relational
attributes. Fo example Dproduct2feature(Dfeature2abstractFeature(pul))) is
simplified to only keep pul. This path was needed for the construction, but
in the absence of name ambiguity, it can be deduced. The implication (I1R)
then becomes: (I1RS) <3> => J, CRUDplots,relaunch,pep,pul. J is the symbol
that represents the top concept of any lattice.

3.3.4. Guidelines to enhance a feature model applied to our example
In this section, we describe the whole relational context family that we

build from the dataset. Then we draw guidelines to interpret different types
of implications extracted thanks to RCA, and how they are used to enhance
the feature model. For rules with a maximal support and rules with null
support, the interpretation of rules in terms of constraints in the feature
model is automated. For rules of intermediate support, interpretation is left
to an expert, using the guidelines.

The whole dataset. In the whole setting, following the models of Figures
3 and 5, we build one formal context for each element of interest: prod-
ucts, user stories, roles, features, abstract features, merges, changes and file-
names. In these contexts, each object has a single attribute corresponding
to the name of the element (we thus have diagonal formal contexts). We
also build a relational context for each relationship: Products2UserStories,
UserStories2Roles, UserStories2Roles, Features2AbstractFeatures, UserSto-
ries2Merges, Merges2Changes and Changes2Filenames. For example, we
build the relational context between features and the abstract features, shown
in Table 4. We see in this table that the abstract feature plot edit param-
eters is associated with its (concrete) associated features, e.g. can edit the
parameters of a plot current season and can export observation data for a
plot.

Interpretation of the various sorts of implications. To enhance the feature
model, we exploit generated implications from the product context. We ob-
tain a list of implications representing the relations between objects among
the products, the user stories, the roles, the features, the abstract features,
the merges, the changes and the filenames. We interpret chosen implica-
tions with specific shape (and their support), to extract the corresponding
constraints for our feature model: constraints that correspond to the tree
structure that can reveal mandatory features, and cross-tree constraints. In

24

the example of Fig. 12, the constraint AFA2 ñ F2 is a cross-tree constraint
which implies that all the configurations containing AFA2 must contain F2.
The constraint F1 ñ AFA1 is a refinement constraint, represented by a tree
edge, which means that when the feature F1 is contained in a configura-
tion, its abstract feature AFA1 is also contained into it (this tree edge was
already present after the NLP step). Finally, the constraint AFA2 ñ F3 is
an additional constraint implying that if the abstract feature AFA2 is part
of a configuration, then the feature F3 is also part of it, indicating that
F3 is a mandatory feature. The constraint F3 ô F4 describes the relation
between features that are always together in the same configurations (i.e.
co-occurrent).

Root

AFA1 AFA2

F1 F2 F3 F4

Constraint

Cross-tree
constraint

Tree
structure

Figure 12: Feature tree with constraints.

The implications involving features and abstract features are interpreted
as follows:

• If n “ 0: No product has all the features in the premise. From the rule:
A ^ B ùñ C with a 0 support, we create the cross-tree constraint ␣
(A ^ B).

• if n is the number of products, the premise is empty and the features
in the conclusion are mandatory. In this case, when a feature under an
abstract feature AF is mandatory then by construction of the abstract
features, AF is mandatory.

• if n ą 0: we deduce that the premise implies the conclusion. This
implication can be translated into a cross-tree constraint. Some parts
of it can also be turned into a mandatory annotation and removed
from the cross-tree constraint. For example, if we have the constraint
AF1 ùñ F2 ^ F3 with AF1 an abstract feature, F2 and F3 two
features, and with F3 a child of AF1 in the tree structure, then F3
is a mandatory feature child of AF1, and the cross-tree constraint is
AF1 ùñ F2. When the premise is a conjunction, the underlying

25

constraint is added to the feature model in the form of a cross-tree
constraint.

In what follows, we apply simplifications consisting in keeping only one
feature among co-occurring ones, removing implied ones, removing attributes
of the bottom concept and erasing relations.

From the premise of one of the simplified implications with support 0: can
sort my plots in the list, can export observation data for a plot,
can manage my irrigations and recommendations in my favorite unit,
we can deduce the mutual exclusion constraint showed below the feature
model of Fig. 13.

Legend:

Mandatory
Optional
Abstract Feature
Concrete Feature

Example

refresh predicted weather

crud plots

plot edit parameters

plots unit list

crud farmer relaunch

can refresh the predicted weather

can CRUD plots

can edit the parameters of a plot current season

can relaunch all failed simulation

can export observation data for a plot

can sort my plots in the list

can filter my plots in the list

know when my plots will be in danger

can manage my irrigations and recommendations in my favorite unit

choose my preferred irrigation unit in my user-settings

can view my irrigation recommendations in my favorite unit

can CRUD a farmer

¬("can sort my plots in the list" ∧ "can export observation data for a plot" ∧ "can manage my irrigations and recommendations in my favorite unit")
"can sort my plots in the list" ⇔ "can filter my plots in the list"

Figure 13: Feature Model Example.

From the simplified implication I1RS with support 3 (empty premise) “
=> J, CRUDplots, relaunch, pep, pul”, we deduce that these features are
mandatory.

We also interpret implications linking the source code (filenames) to the
features. Consider the simplified implication: “administrator, farmer, mrs:1-
2, plot unit list, plot edit parameters, src/plotList, src/plot, src/weather,
src/farmer, edited_file, new_file ñ As a farmer with a plot I can sort my
plots in the list, As a farmer with a plot I can filter my plots in the list, (...)”.
We can deduce, that, together with some conditions, actions on several files

26

(plotList, plot, weather, farmer), both features sort and filter are present,
thus consolidating the fact that they are co-occurring, and that this is not
accidental (due to the low number of products we examine).

Lastly, some information about roles can be extracted from some implica-
tions. For example with the following simplified implication, we can deduce
that under some conditions, when refresh is present (and some merge are
made that we omit for simplicity), then the role farmerwithplot is present:
“<2> As a farmer I can refresh the predicted weather, mrs:1-2, plot unit list,
plot edit parameters, src/plot, src/weather, src/farmer, edited_file, new_file
ñ farmerwithplot”. This supports the idea that refresh, despite the fact
that this is not mentioned in the user story, may be connected to role farmer-
withplot, and propose it as an annotation of the feature model is suitable.

Example

refresh predicted weather

crud plots

plot edit parameters

plots unit list

crud farmer relaunch

can refresh the predicted weather

can CRUD plots

can edit the parameters of a plot current season

can relaunch all failed simulation

can export observation data for a plot

can sort my plots in the list

can filter my plots in the list

know when my plots will be in danger

can manage my irrigations and recommendations in my favorite unit

choose my preferred irrigation unit in my user-settings

can view my irrigation recommendations in my favorite unit

can CRUD a farmer

¬("can sort my plots in the list" ∧ "can export observation data for a plot" ∧ "can manage my irrigations and recommendations in my favorite unit")
"can sort my plots in the list" ⇔ "can filter my plots in the list"

Farmer

FarmerWithPlot

FarmerIrrigator

Administrator

Figure 14: Enhanced Feature Model (with additional colored roles and links).

3.3.5. Summary of the application of RCA to enhance the feature tree and
obtain the feature model annotated with roles

The RCA part of the process is summarized in Fig.15. Step RCA 1 takes
as input various information from the code base to build the Relational Con-
text Family (RCF). Step RCA 2 is simply the RCA process, which outcomes
are extended formal contexts and concept lattices (Sect. 3.3.2). The extended
formal contexts contain relational attributes that refer to the concepts in the
lattices. At Step RCA 3, the extended formal contexts are used to compute a

27

base of implications (also Sect. 3.3.2). The implications are simplified (Step
RCA 4) to obtain readable and actionable forms (Sect. 3.3.3). They are used
to complete the feature tree to obtain a feature model, with various graphi-
cal or textual constraints (Step RCA 5) as described in Sect. 3.3.4. Finally,
the connection between roles and features may be used to produce a feature
model annotated by roles (Step RCA 6), as also described in Sect. 3.3.4.

(RCA 1)
Input

construction (RCA 2)
RCA process

(RCA 3)
Implication Base

computation

(RCA 4)
Implication
rewriting

(RCA 5)
Implication

interpretation (RCA 6)
Feature Model
enhancement

US x Products
(Table 1)

US, merges,
changes, files from

VCS
(Table 2)

Features x Roles
(Table 3)

Features x
AbstractFeatures

(Table 4)

Feature tree
(Fig. 13
without

decorations)

Feature model
(Fig. 13)

Feature model-Roles
(Fig. 14)

RCF
(Table 8

+ FC/RC from
VCS)

Extended
Formal contexts

Concept
lattices

Base of
Implications

Simplified Base of
Implications

Figure 15: Summary of the RCA part.

3.4. Tool
We have automated the proposed process using several tools. To ob-

tain our process inputs, we first use the GitLab API 1 to retrieve user sto-
ries and source code. For natural language processing, we use Gensim [20]
with word2vec [11] and k-means [12]. Relational concept analysis and the
Duquenne-Guigues base of implications were performed using FCA4J2 [21]
and the proper premises base algorithm described in [22]. FCA4J was used as
a Java JAR with multiple options and comes with online documentation. In
our dataset with multiple formal and relational contexts, the execution time
was about one minute to perform all the computations. Our final models are
represented in XML format and are loaded in FeatureIDE [10].

The artifact [23] used in this article is available online here:
https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-

1https://docs.gitlab.com/ee/api/rest/index.html
2https://www.lirmm.fr/fca4j/

28

https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-and-Feature-Models-by-Leveraging-Version-Control-Platform
https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-and-Feature-Models-by-Leveraging-Version-Control-Platform
https://docs.gitlab.com/ee/api/rest/index.html
https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-and-Feature-Models-by-Leveraging-Version-Control-Platform
https://www.lirmm.fr/fca4j/
https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-and-Feature-Models-by-Leveraging-Version-Control-Platform

and-Feature-Models-by-Leveraging-Version-Control-Platform

4. Case study

In order to evaluate the proposed process, we conducted a case study with
our industrial partner. We defined a protocol to compare feature models
synthesized with our process with those manually created by our industrial
partner. Currently, our industrial partner did not fully adopt SPLE. Thereby
we do not have concrete feature models manually defined by the IT team.
We organized a workshop where an expert from the IT team was asked to
build his own feature model starting from a set of features. Then for the
comparison, we confronted the two feature models by interacting with this
expert. The closest the synthesized feature model is from the expert’s one
the more it is accurate. When a feature model is accurate it becomes useful
for the IT team.

For the case study we used the user stories and the code repository from
the GitLab instance of our industrial partner. The dataset includes 127 user
stories, 6 products, 60 merges and a thousand of files. We identified 15
roles and arranged 127 features into 42 clusters. For the validation with the
expert, we took a sample with 60 features in 10 clusters, in order to make the
validation human-feasible. To introduce the workshop, a first feature model
is created for a smaller example with only 12 features.

The expert is a software engineer who actively participates in the devel-
opment of the products. He has 10 years of experience, 8 of which in the
company. An introduction to the feature models, how to build them and
what the rules are was given before the experiment started and we spent the
necessary time answering questions and showing examples.

4.1. Protocol
We followed the procedure described below.
Step (1), we asked the expert to construct his feature model with a set

of features; Step (2), we presented to the expert our feature model, and
we asked him to rearrange it if necessary; Step (3), we asked the expert to
rearrange his feature model, if necessary.

In our validation, we avoided any bias introduced by our presence in the
workshop, by first letting our interviewee building the feature model without
help or hints. First we give the expert the features and abstract features,
and we asked him to produce a feature model; Then we give to the expert

29

https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-and-Feature-Models-by-Leveraging-Version-Control-Platform
https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-and-Feature-Models-by-Leveraging-Version-Control-Platform
https://gite.lirmm.fr/tgeorges/Bridging-the-Gap-between-User-Stories-and-Feature-Models-by-Leveraging-Version-Control-Platform

our feature model and we asked him to rearrange it; Finally we give back to
the expert the feature model built at the first time and we asked if he wants
to edit it.

Based on the feature model created by the expert, there were three pos-
sible outcomes depending on the similarity between his results and ours.
Case 1: the expert’s feature model presents only clusters similar to those
of our feature model, this may mean that our feature model is relevant to
the company. The relevance depends on the number of similarities. Case
2: the expert’s feature model has clusters that are similar to those in our
feature model and it combines features from different clusters, so our feature
model partially represents the system. Case 3: the expert’s feature model
has no clusters that are similar to those in our feature model. The expert
reorganizes features from different clusters.

At each step, we engaged in a discussion about the process, during which
we asked the expert to assess their level of confidence in the feature model
they had developed, using a rating scale of 1 to 5. A score of 1 indicated little
confidence in the model, while a score of 5 meant complete confidence. This
discussion also helped to determine the similarity of clusters between those of
the expert and ours. We also timed the duration required for each step. The
first step, which involved sorting and categorizing features manually, proved
to be the most time-consuming. On the other hand, fixing the automated
model and then the manual model took less time. This difference was due to
the better understanding of the features gained during the first step, as well
as the preliminary reflection carried out. We asked the expert to evaluate
the difficulty of each step on a scale of 1 to 5. The expert indicated that the
first step was the most complex, while the subsequent steps were simpler. In
order to compare the results of the expert with ours, we keep the count of
the number of clusters. The measurements are presented in Table 10 for the
example with 12 features and in Table 11 for the real case with 60 features.

Table 10: Metrics of the workshop on the example with 12 features

Example Time in minutes Difficulty (1-5) #Clusters Confidence (1-5)
Manual 10 3 6 3
Automated 5 2 5 3
Manual 5 2 6 4

Finally, we recorded the expert’s remarks and comments for each step.
The expert emphasized that the first step was the most demanding in terms

30

Table 11: Metrics of the workshop on the real case with 60 features

Actual Time in minutes Difficulty (1-5) #Clusters Confidence (1-5)
Manual 30 4 8 3
Automated 10 2 7 3
Manual 15 2 7 4

of time and complexity. It allowed them to familiarize themselves with the
features, but it was also tedious. However, the second step shed new light
on the features and introduced an organizational perspective. This enriched
the final step, which involved correcting the initially created manual model,
improving both the categories and the level of confidence.

4.2. Analysis
The expert knows perfectly the user stories and did not make any com-

ment on the roles or features identified from these user stories. This confirms
that the first steps of our process did not have any negative impact while
processing the initial dataset.

The first step was the longest, the expert found hard the creation of the
first clusters. The trust on the expert feature models during the first step
was 3{5. In the second step for the comparison with our synthesized feature
models, the expert grade is 3{5. The expert noticed functional differences
with his work. In particular, he made the observation that our feature model
is closer to the implementation and the feature model built by hand is more
abstract.

In the third step, the expert edited his feature model and gave a trust
score of 4{5. This means that our synthesized feature model, even if it did
not provide him a complete solution, helped the expert to refine his model
and obtain a more accurate point of view on the whole system. The expert
said that: “the synthesized feature model is a time saver and it is easier to
correct his feature model than building it manually from scratch”. The expert
did not find inconsistency in the synthesized feature model. The expert said
that: “the identified cross-tree constraints are too many, with a lot of false
positives”.

In the third step, the expert noticed some mistakes in his model that have
to be corrected. For example, the expert refined one cluster by dividing it in
two clusters. At the end, the feature model had more specific clusters, which
correspond to more focused functional points. The expert also renamed some
clusters using names given by our model.

31

On the example, the expert constructed 4 clusters in Step 1 and 5 clusters
in Step 3. During Step 2, the expert suggested to add two clusters and merge
one in our feature model.

On the larger sample, the expert made 10 clusters in Step 1. The expert
added 2 clusters for a total of 11 clusters in our model during Step 2. Then
in Step 3 the expert renamed the clusters and rearranged the features.

4.3. Discussion
Main findings

We designed a method based on the user stories of existing products,
relying on a VCS platform to guide a migration to a product line approach.
Our output is actually a particular point of view of the analyzed system:
a feature model. It represents the current system based on the features
identified from the user stories. We leverage natural language processing,
clustering and relational concept analysis to automatically obtain relevant
and well-organized models. The current output is already usable and useful
for our industrial partner. All our planned enrichment to the process will
improve the overall quality. One of the lessons learnt during the workshop
with the expert is that analyzing and correcting an automatically generated
feature model is easier and faster than building it manually. Indeed an expert
can, with low effort, analyze the generated information, while building it from
scratch is laborious and time-expensive.

Several improvements could be considered to enhance the approach: The
feature names could be abstracted to more general concepts or characteris-
tics to align them with standard feature definitions. This would improve the
readability of the feature model and enable the formation of more meaningful
groups. The inclusion of multiple industry experts in the validation process
would increase the robustness of the case study and mitigate bias introduced
by a single expert point of view. Comparing our approach with existing
automated feature model synthesis methods would provide another perspec-
tive on the evaluation. Our process generated a large number of cross-tree
constraints, some of which were redundant or irrelevant. As our approach is
semi-automatic, we asked the expert to verify and reduce these constraints.

Threats to Validity
One threat is about the generalization of the approach and the results

of the case study. Indeed, the case study was conducted with our industrial
partner, and the tool has been designed built on the technology used by

32

this partner. In particular, user stories are described within GitLab issues.
However, we expect our approach to be applicable to a large spectrum of
projects.

The main requirement is the meaning of the user stories, they should
represent a feature relevant for a user. If the user and the feature can be
identified within a user story, then our approach can be applied. Even with
a set of user stories not formatted like ours, a pre-processing step is possible
to clean them.

The dataset we used to validate our approach contains 127 user stories, 6
products and 127 features. We assume that this is a relevant set of features
that can be considered generic enough to show the feasibility. In terms of
applicability, our approach showed good scalability during testing. The note-
book runs in less than one hour (including clustering and RCA). Overall, our
approach should remain feasible for real-world scenarios with minor domain
and dataset adaptation.

Defining user stories as requirements and managing them together with
source code through merges in a VCS are a common practice in nowadays
software projects. This workflow is popular in companies adopting agile
methods in their software projects. Our approach is thus applicable for any
software using user stories to describe them and using merges handled by a
VCS to implement their features. Even with a different technical implemen-
tation of such process, for example with user stories externalized from the
VCS, the approach remains applicable, with a different tooling.

The validation of our approach is made on existing products of our indus-
trial partner. During the workshop with the expert, we have compared two
ways of producing the feature model: from scratch and adapting a feature
model generated thanks to our approach. From this case study, we conclude
that our generated feature model is relevant and useful. However, one threat
to validity resides in the fact that we have provided the expert with a single
automatically-generated feature model, using our approach. So on the one
hand it may happen that any generated information from the user stories,
without using our approach, may be a good help to build the feature model.
On the other hand, we did not evaluate independently the benefits of each
part of our process. We thus plan to organize a second workshop with ex-
perts, in order to provide them with different generated artifacts, and to
compare the relevance of the different parts of our approach. In this case
study, we wanted to focus in particular on the evaluation of the output of
the process. Since the expert was already familiar with the products and had

33

prior knowledge of feature modeling, this should be considered when gener-
alizing the methodology. Replicating the case study with a person who does
not know the dataset may lead to other results. The parameters of natural
language processing methods are usually dependent on the used dataset. We
tried several variations of models and parameters. In the end, the pipeline
word2vec for vectorisation, elbow method and then clustering with k-means
were the most efficient in our case. In another dataset, the parameters should
be adjusted and the models tuned for better results.

5. Related Work

Agile SPL principles. It is natural to think of combining Agile approaches
and software product line engineering, as both promote reusability. Diaz et
al. did a systematic literature review on Agile product line engineering has
been presented [24]. da Silva et al. conducted a systematic mapping study
on Agile software product lines [25]. Hanssen proposed enabling factors for
Agile software product line engineering [26]. He highlighted the different
natures of both approaches, SPL being “pro-active and plan-driven develop-
ment”, while Agile development promotes “re-active and change-driven de-
velopment”. Among the enablers, we can find this advice: keep continuity
between product development and core assets; and simplify requirement man-
agement. By proposing a reengineering process which considers a chain of
connected artifacts (from user stories to source code file names), our approach
aims to ensure part of this continuity. Founding the process on user stories
contributes to keeping requirements in the spirit of Agile development.

Version Control Systems and SPL. Version Control Systems are a common
practice to manage sequential revisions of a software, but they hardly man-
age the system variants. Authors of [27] review the existing strategies that
have been proposed in Variation control systems. One recent proposal is
ECSEST (Extraction and Composition for Systems Evolving in Space and
Time), which aims to support variants composition while managing feature
revisions [28]. In our work, we do not address specifically the problem of
maintaining revisions of various variants and knowledge on feature loca-
tion. We aim at exploiting the connection between user stories and the
code changes to identify and maintain a variability model. Dintzner et. al
proposed a co-evolution of features and code [29]. Their tool (a FEVER ex-
tension) relies on the commits in a VCS, and maintains a mapping between

34

features and assets. The proposal is applied to the variability model of the
Linux kernel which is expressed in the Kconfig language. A difference with
our work is that we use the chain of mappings that goes from user stories to
files to synthesize a feature model. We also use NLP techniques to identify
features and RCA to identify logical constraints.

Natural Language Processing applied to requirements in SPLs. Bakar et al.
conducted a systematic literature review on approaches that extract features
from natural language requirements in software product lines [30]. Niu et
al. deal with textual documents to identify functional requirement profiles
(FRPs) for building a variability model written in OVM (Object Variability
Model) [31]. The FRPs are “user-visible system functionalities” written as
pairs composed with a verb followed by its direct object. Authors use various
techniques to identify indexing units: looking for verbs, stemming, part-of-
speech tagging, removing stop words, and identifying linguistic affinities in
the form of 2-words units. In a second paper, authors examined the in-
teraction between quality requirements and functional requirements through
formal concept analysis [32]. To this end, they build a table where objects
are scenarios and attributes are the requirements. The concept lattice then
highlights and organizes the requirement interactions. Another approach
(FENL) is presented by Bakar et al. [33]. The authors use LSA (Latent
Semantic Analysis) followed by clustering algorithms (including k-means) to
identify features from software reviews. In our work, we analyze user sto-
ries, and we use a word2Vec pre-trained model for the vectorization, and
k-means for the clustering, after having determined the number of clusters
with Elbow. Mefteh et al. [34] more specifically use multilingual functional
requirements, that are short sentences such as “The system should block and
remove spyware”. These requirements are analyzed to extract features, using
various techniques. In our NLP process we used the user story format for
the decomposition and separated the role and the feature. Mefteh et al. use
functional requirements only from the system point of view. For text repre-
sentation/vectorization, they use TFIDF and add synonyms coming from a
thesaurus, while we use a word2Vec pre-trained model.

General approaches for feature model synthesis. A lot of approaches have
been proposed for building feature models. We review some representative
proposals. Efficient algorithms for feature graph extraction from CNF and
DNF are presented by She et al. [35]. Linsbauer et al. designed an approach

35

based on a genetic algorithm [36]. The issue of extracting the feature models
from large collections of partial product descriptions is addressed by Davril
et al. [37]. A method combining an interaction with the practitioner to
parameterize the extraction and an automatic algorithm merging product
descriptions to compute the feature hierarchy and then add variability is
described by Acher et al. [38]. Synthesis of attributed feature models is
studied by Becan et al. [39], and they explore the usage of ontologies in
the process [40]. Mefteh et al. [41] built feature models using requirements
expressed through use case diagrams, scenarios and functional requirements.

In contrast to these works, we focused in our approach on software prod-
ucts described by their user stories and VCS information. We are thereby
targeting software development projects adopting modern, agile and central-
ized project management around a VCS platform. We also leveraged different
techniques, like NLP, clustering and FCA/RCA.

Approaches leveraging Formal Concept Analysis. Formal Concept Analysis
(FCA) has been explored in several approaches concerned by logical relation-
ships extraction or feature model synthesis. Traditional usages with feature
models are identified by Loesch et al. [42]. Ryssel et al. propose an approach
for extracting feature diagrams and cross-tree constraints from formal con-
texts using Formal Concept Analysis [43]. Their approach builds a concept
hierarchy and a base of implications. [44] develops an alternative approach
for feature model synthesis which structures the tree with internal nodes rep-
resenting logical operators (e.g. an or node) rather than abstract features.
In [34], after a step where features are extracted from multilingual functional
requirements, Formal Concept Analysis and several heuristics are applied to
synthesize a feature model.

A synthesis of the correspondences between conceptual structures and
feature models is presented in [15]. It leads to characterize equivalence classes
of feature models, by their embedding into a conceptual structure, which is
canonical.

Relational Concept Analysis (RCA) has also been leveraged in the liter-
ature for extracting logical relationships in the context of software product
lines. A feature variability model is extracted by Hlad et al. [45] as a first step
of an approach that addresses the problem of mapping features and feature
interactions to their corresponding code artifacts. RCA is used to build this
mapping and to derive logical formulas on features that annotate the source
code. Carbonnel et al. [46] use RCA to analyze the variability in a set of

36

interconnected products, e.g. accounting software (first product family) de-
scribed by the used database management system (second product family),
the programming languages they are written in (third product family), and
so on. Tracks to synthesize feature models with references [47] are drawn.

Our positioning. In our work, we take advantage of many of these works. The
use of ontologies by Becan et al. [40] and Czarnecki et al. [48] were a source
of inspiration. We use the correspondences identified by many researchers
along the years between conceptual structures and feature models, and in
general the correspondences between conceptual structures and the logical
variability structuring of an SPL. Compared to existing work using FCA,
we consider the connection of many different artifacts, that range from user
stories to impacted files, going through issues, merge operations and changes.
Exploiting user stories requires considering roles and features associated to
the roles, which also is a specificity of our approach.

6. Conclusion

In this paper we presented an automated process for synthesizing feature
models from existing software products built in agile projects. By leverag-
ing natural language processing, vectorization, clustering, and formal and
relational concept analysis, we were able to identify and refine concrete and
abstract features, as well as establish traceability relations between user sto-
ries and source code. Our process is based on natural language processing to
identify roles and features. We also cluster the features in abstract features.
Then we leverage relational concept analysis to complete an initial feature
model with additional constraints. This approach offers a comprehensive way
to extract relevant feature models from existing products that can be easily
modified by experts to produce the actual feature model of the product line.

As a perspective of this work, we plan to improve our approach by con-
ducting a more deeper analysis of the source code. With the study of the code
base at different granularity levels, from high-level architecture to individual
lines of code, we want to find patterns, dependencies between features. We
want to integrate Abstract Syntax Trees (AST) to identify variability at a
finer granularity. AST will allow us to parse the code into syntax elements
to understand how different parts of the code interact, and to study when
two user stories have to implement their features in the same set of files and
other source code artifacts.

37

Besides this, we plan to integrate the ontology in different ways in our pro-
cess to improve it by guiding the clustering with the ontological relationships.
The ontology will also help us to give more meaningful names to the abstract
features. Expected improvements are on the identification of abstract fea-
tures and the refinement of their hierarchical organization. In addition, we
plan to analyze the implications, especially those with null support that of-
ten correspond to accidental exclusions. We also would like to combine the
use of the ontology and the concept lattice generated by relational concept
analysis to identify relevant or groups and alternatives.

References

[1] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineer-
ing - Foundations, Principles, and Techniques, Springer, 2005.

[2] C. W. Krueger, Easing the transition to software mass customization, in:
F. van der Linden (Ed.), Software Product-Family Engineering, 4th In-
ternational Workshop, PFE 2001, Bilbao, Spain, October 3-5, 2001, Re-
vised Papers, Vol. 2290 of Lecture Notes in Computer Science, Springer,
2001, pp. 282–293. doi:10.1007/3-540-47833-7_25.
URL https://doi.org/10.1007/3-540-47833-7_25

[3] F. van der Linden, Software product families in europe: The esaps &
café projects, IEEE Softw. 19 (4) (2002) 41–49. doi:10.1109/MS.2002.
1020286.
URL https://doi.org/10.1109/MS.2002.1020286

[4] M. Abbas, R. Jongeling, C. Lindskog, E. P. Enoiu, M. Saadatmand,
D. Sundmark, Product line adoption in industry: an experience report
from the railway domain, in: R. E. Lopez-Herrejon (Ed.), SPLC ’20:
24th ACM International Systems and Software Product Line Confer-
ence, Montreal, Quebec, Canada, October 19-23, 2020, Volume A, ACM,
2020, pp. 3:1–3:11. doi:10.1145/3382025.3414953.
URL https://doi.org/10.1145/3382025.3414953

[5] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature location in
source code: a taxonomy and survey, J. Softw. Evol. Process. 25 (1)
(2013) 53–95. doi:10.1002/smr.567.
URL https://doi.org/10.1002/smr.567

38

https://doi.org/10.1007/3-540-47833-7_25
https://doi.org/10.1007/3-540-47833-7_25
https://doi.org/10.1007/3-540-47833-7_25
https://doi.org/10.1109/MS.2002.1020286
https://doi.org/10.1109/MS.2002.1020286
https://doi.org/10.1109/MS.2002.1020286
https://doi.org/10.1109/MS.2002.1020286
https://doi.org/10.1109/MS.2002.1020286
https://doi.org/10.1145/3382025.3414953
https://doi.org/10.1145/3382025.3414953
https://doi.org/10.1145/3382025.3414953
https://doi.org/10.1145/3382025.3414953
https://doi.org/10.1002/smr.567
https://doi.org/10.1002/smr.567
https://doi.org/10.1002/smr.567
https://doi.org/10.1002/smr.567

[6] D. Spinellis, Version control systems, IEEE Softw. 22 (5) (2005) 108–
109.

[7] M. Cohn, User Stories Applied: For Agile Software Development, Addi-
son Wesley Longman Publishing Co., Inc., USA, 2004.

[8] B. Ganter, R. Wille, Formal Concept Analysis - Mathematical Founda-
tions, Springer, 1999.

[9] M. Rouane-Hacene, M. Huchard, A. Napoli, P. Valtchev, Relational
concept analysis: mining concept lattices from multi-relational data,
Ann. Math. Artif. Intell. 67 (1) (2013) 81–108.

[10] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich,
Featureide: An extensible framework for feature-oriented software de-
velopment, Sci. Comput. Program. 79 (2014) 70–85.

[11] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed
representations of words and phrases and their compositionality, in: Ad-
vances in Neural Information Processing Systems 26: 27th Annual Con-
ference on Neural Information Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United States,
2013, pp. 3111–3119.

[12] H.-H. Bock, Clustering Methods: A History of k-Means Algorithms,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 161–172.

[13] J. L. Guigues, V. Duquenne, Familles minimales d’implications infor-
matives résultant d’un tableau de données binaires, Mathématiques et
sciences humaines 95 (1986) 5–18.
URL http://www.numdam.org/item/MSH_1986__95__5_0/

[14] J. Galasso, M. Huchard, Extending boolean variability relationship ex-
traction to multi-valued software descriptions, in: R. E. Lopez-Herrejon,
J. Martinez, W. K. G. Assunção, T. Ziadi, M. Acher, S. Vergilio (Eds.),
Handbook of Re-Engineering Software Intensive Systems into Software
Product Lines, Springer International Publishing, 2023, pp. 143–173.
doi:10.1007/978-3-031-11686-5_6.
URL https://doi.org/10.1007/978-3-031-11686-5_6

39

http://www.numdam.org/item/MSH_1986__95__5_0/
http://www.numdam.org/item/MSH_1986__95__5_0/
http://www.numdam.org/item/MSH_1986__95__5_0/
https://doi.org/10.1007/978-3-031-11686-5_6
https://doi.org/10.1007/978-3-031-11686-5_6
https://doi.org/10.1007/978-3-031-11686-5_6
https://doi.org/10.1007/978-3-031-11686-5_6

[15] J. Carbonnel, M. Huchard, C. Nebut, Modelling equivalence classes of
feature models with concept lattices to assist their extraction from prod-
uct descriptions, Journal of Systems and Software 152 (2019) 1–23.

[16] K. Bertet, C. Demko, J.-F. Viaud, C. Guérin, Lattices, closures
systems and implication bases: A survey of structural aspects
and algorithms, Theoretical Computer Science 743 (2018) 93–109.
doi:https://doi.org/10.1016/j.tcs.2016.11.021.
URL https://www.sciencedirect.com/science/article/pii/
S0304397516306806

[17] J. Baixeries, V. Codocedo, M. Kaytoue, A. Napoli, Three views on
dependency covers from an FCA perspective, in: D. Dürrschnabel,
D. López-Rodríguez (Eds.), Formal Concept Analysis - 17th Interna-
tional Conference, ICFCA 2023, Kassel, Germany, July 17-21, 2023,
Proceedings, Vol. 13934 of Lecture Notes in Computer Science, Springer,
2023, pp. 78–94. doi:10.1007/978-3-031-35949-1_6.
URL https://doi.org/10.1007/978-3-031-35949-1_6

[18] J. Carbonnel, K. Bertet, M. Huchard, C. Nebut, FCA for software prod-
uct line representation: Mixing configuration and feature relationships
in a unique canonical representation, Discret. Appl. Math. 273 (2020)
43–64. doi:10.1016/J.DAM.2019.06.008.
URL https://doi.org/10.1016/j.dam.2019.06.008

[19] M. Wajnberg, Analyse relationnelle de concepts : une méthode polyva-
lente pour l’extraction de connaissance, Thèse de doctorat, Université
du Québec à Montréal, Université de Lorraine (Nov. 2020).
URL https://hal.science/tel-03042085

[20] R. Rehurek, P. Sojka, Gensim–python framework for vector space mod-
elling, NLP Centre, Faculty of Informatics, Masaryk University, Brno,
Czech Republic 3 (2) (2011).

[21] A. Gutierrez, M. Huchard, P. Martin, FCA4J: A java library for rela-
tional concept analysis and formal concept analysis, in: Proceedings of
the Sixteenth International Conference on Concept Lattices and Their
Applications (CLA 2022) Tallinn, Estonia, June 20-22, 2022., Tallinn,
Estonia, June 20-22, 2022, Vol. 3308 of CEUR Workshop Proceedings,
CEUR-WS.org, 2022, pp. 207–212.

40

https://www.sciencedirect.com/science/article/pii/S0304397516306806
https://www.sciencedirect.com/science/article/pii/S0304397516306806
https://www.sciencedirect.com/science/article/pii/S0304397516306806
https://doi.org/https://doi.org/10.1016/j.tcs.2016.11.021
https://www.sciencedirect.com/science/article/pii/S0304397516306806
https://www.sciencedirect.com/science/article/pii/S0304397516306806
https://doi.org/10.1007/978-3-031-35949-1_6
https://doi.org/10.1007/978-3-031-35949-1_6
https://doi.org/10.1007/978-3-031-35949-1_6
https://doi.org/10.1007/978-3-031-35949-1_6
https://doi.org/10.1016/j.dam.2019.06.008
https://doi.org/10.1016/j.dam.2019.06.008
https://doi.org/10.1016/j.dam.2019.06.008
https://doi.org/10.1016/J.DAM.2019.06.008
https://doi.org/10.1016/j.dam.2019.06.008
https://hal.science/tel-03042085
https://hal.science/tel-03042085
https://hal.science/tel-03042085

[22] A. Bazin, A depth-first search algorithm for computing pseudo-closed
sets, Discret. Appl. Math. 249 (2018) 28–35.

[23] T. Georges, M. Huchard, C. Tibermacine, C. Nebut, M. Konig, Bridging
the gap between user-stories and feature models by leveraging version
control platforms (Aug. 2025). doi:10.5281/zenodo.16799821.
URL https://doi.org/10.5281/zenodo.16799821

[24] J. Díaz, J. Pérez, P. P. Alarcón, J. Garbajosa, Agile product line engi-
neering - a systematic literature review, Softw. Pract. Exp. 41 (8) (2011)
921–941.

[25] I. F. da Silva, P. A. da Mota Silveira Neto, P. O’Leary, E. S. de Almeida,
S. R. de Lemos Meira, Agile software product lines: a systematic map-
ping study, Softw. Pract. Exp. 41 (8) (2011) 899–920.

[26] G. K. Hanssen, Agile software product line engineering: enabling factors,
Softw. Pract. Exp. 41 (8) (2011) 883–897.

[27] L. Linsbauer, F. Schwägerl, T. Berger, P. Grünbacher, Concepts of
variation control systems, Journal of Systems and Software 171 (2021)
110796.

[28] G. K. Michelon, D. Obermann, W. K. G. Assunção, L. Linsbauer,
P. Grünbacher, S. Fischer, R. E. Lopez-Herrejon, A. Egyed, Evolving
software system families in space and time with feature revisions, Em-
pir. Softw. Eng. 27 (5) (2022) 112.

[29] N. Dintzner, A. van Deursen, M. Pinzger, FEVER: an approach to ana-
lyze feature-oriented changes and artefact co-evolution in highly config-
urable systems, Empir. Softw. Eng. 23 (2) (2018) 905–952.

[30] N. H. Bakar, Z. M. Kasirun, N. Salleh, Feature extraction approaches
from natural language requirements for reuse in software product lines:
A systematic literature review, Journal of Systems and Software 106
(2015) 132–149.

[31] N. Niu, S. M. Easterbrook, Extracting and modeling product line
functional requirements, in: 16th IEEE International Requirements
Engineering Conference, RE 2008, 8-12 September 2008, Barcelona,
Catalunya, Spain, IEEE Computer Society, 2008, pp. 155–164.

41

https://doi.org/10.5281/zenodo.16799821
https://doi.org/10.5281/zenodo.16799821
https://doi.org/10.5281/zenodo.16799821
https://doi.org/10.5281/zenodo.16799821
https://doi.org/10.5281/zenodo.16799821

[32] N. Niu, S. M. Easterbrook, Concept analysis for product line require-
ments, in: K. J. Sullivan, A. Moreira, C. Schwanninger, J. Gray (Eds.),
Proceedings of the 8th International Conference on Aspect-Oriented
Software Development, AOSD 2009, Charlottesville, Virginia, USA,
March 2-6, 2009, ACM, 2009, pp. 137–148.

[33] N. H. Bakar, Z. M. Kasirun, N. Salleh, H. A. Jalab, Extracting features
from online software reviews to aid requirements reuse, Applied Soft
Computing 49 (2016) 1297–1315.

[34] M. Mefteh, N. Bouassida, H. Ben-Abdallah, Mining feature models from
functional requirements, Comput. J. 59 (12) (2016) 1784–1804.

[35] S. She, U. Ryssel, N. Andersen, A. Wasowski, K. Czarnecki, Efficient
synthesis of feature models, Inf. Softw. Technol. 56 (9) (2014) 1122–1143.

[36] L. Linsbauer, R. E. Lopez-Herrejon, A. Egyed, Feature model synthesis
with genetic programming, in: C. Le Goues, S. Yoo (Eds.), Search-Based
Software Engineering, Springer International Publishing, Cham, 2014,
pp. 153–167.

[37] J. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, P. Hey-
mans, Feature model extraction from large collections of informal prod-
uct descriptions, in: Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Fed-
eration, August 18-26, 2013, ACM, 2013, pp. 290–300.

[38] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Col-
let, P. Lahire, On extracting feature models from product descriptions,
in: Sixth International Workshop on Variability Modelling of Software-
Intensive Systems, Leipzig, Germany, January 25-27, 2012. Proceedings,
ACM, 2012, pp. 45–54.

[39] G. Bécan, R. Behjati, A. Gotlieb, M. Acher, Synthesis of attributed
feature models from product descriptions, in: D. C. Schmidt (Ed.), Pro-
ceedings of the 19th International Conference on Software Product Line,
SPLC 2015, Nashville, TN, USA, July 20-24, 2015, ACM, 2015, pp. 1–
10.

42

[40] G. Bécan, M. Acher, B. Baudry, S. B. Nasr, Breathing ontological knowl-
edge into feature model synthesis: an empirical study, Empir. Softw.
Eng. 21 (4) (2016) 1794–1841.

[41] M. Mefteh, N. Bouassida, H. Ben-Abdallah, Feature model synthesis
from language-independent functional descriptions, in: 2018 IEEE 16th
International Conference on Software Engineering Research, Manage-
ment and Applications (SERA), 2018, pp. 151–158. doi:10.1109/SERA.
2018.8477223.

[42] F. Loesch, E. Ploedereder, Restructuring variability in software prod-
uct lines using concept analysis of product configurations, in: R. L.
Krikhaar, C. Verhoef, G. A. D. Lucca (Eds.), 11th European Confer-
ence on Software Maintenance and Reengineering, Software Evolution
in Complex Software Intensive Systems, CSMR 2007, 21-23 March 2007,
Amsterdam, The Netherlands, IEEE Computer Society, 2007, pp. 159–
170.

[43] U. Ryssel, J. Ploennigs, K. Kabitzsch, Extraction of feature models from
formal contexts, in: I. Schaefer, I. John, K. Schmid (Eds.), Software
Product Lines - 15th International Conference, SPLC 2011, Munich,
Germany, August 22-26, 2011. Workshop Proceedings (Volume 2), ACM,
2011, p. 4.

[44] R. Al-Msie’deen, M. Huchard, A. Seriai, C. Urtado, S. Vauttier, Re-
verse engineering feature models from software configurations using for-
mal concept analysis, in: K. Bertet, S. Rudolph (Eds.), Proceedings of
the Eleventh International Conference on Concept Lattices and Their
Applications, Košice, Slovakia, October 7-10, 2014, Vol. 1252 of CEUR
Workshop Proceedings, CEUR-WS.org, 2014, pp. 95–106.

[45] H. Nicolas, B. Lemoine, M. Huchard, A.-D. Seriai, Leveraging relational
concept analysis for automated feature location in software product
lines, in: GPCE 2021 - 20th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences, Association
for Computing Machinery (ACM SIGPLAN), Chicago, United States,
2021, pp. 170–183.

[46] J. Carbonnel, M. Huchard, C. Nebut, Exploring the variability of in-
terconnected product families with relational concept analysis, in: Pro-

43

https://doi.org/10.1109/SERA.2018.8477223
https://doi.org/10.1109/SERA.2018.8477223

ceedings of the 23rd International Systems and Software Product Line
Conference, SPLC 2019, Volume B, Paris, France, September 9-13, 2019,
ACM, 2019, pp. 90:1–90:8.

[47] K. Czarnecki, S. Helsen, U. W. Eisenecker, Staged configuration through
specialization and multilevel configuration of feature models, Softw. Pro-
cess. Improv. Pract. 10 (2) (2005) 143–169.

[48] K. Czarnecki, C. H. P. Kim, K. T. Kalleberg, Feature models are views
on ontologies, in: Software Product Lines, 10th International Confer-
ence, SPLC 2006, Baltimore, Maryland, USA, August 21-24, 2006, Pro-
ceedings, IEEE Computer Society, 2006, pp. 41–51.

44

	Introduction
	Background and overview
	Software Product Lines
	Overview of the proposed process
	Inputs: User stories and code repository managed in a VCS
	Output: Feature model

	Feature model synthesis
	Illustrative example
	Towards a feature tree: NLP for role extraction, and for fine-grained and coarse-grained feature extraction
	Towards a Feature Model: FCA/RCA to Derive Logical Constraints that Enhance the Feature Tree
	Logical Constraints extraction with FCA
	Logical Constraints extraction with RCA
	Simplification of rules in the rule base
	Guidelines to enhance a feature model applied to our example
	Summary of the application of RCA to enhance the feature tree and obtain the feature model annotated with roles

	Tool

	Case study
	Protocol
	Analysis
	Discussion

	Related Work
	Conclusion

